These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 26834579)

  • 1. Neural Substrate Expansion for the Restoration of Brain Function.
    Chen HI; Jgamadze D; Serruya MD; Cullen DK; Wolf JA; Smith DH
    Front Syst Neurosci; 2016; 10():1. PubMed ID: 26834579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces.
    Mandonnet E; Duffau H
    Front Syst Neurosci; 2014; 8():82. PubMed ID: 24834030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.
    Sakas DE; Panourias IG; Simpson BA
    Acta Neurochir Suppl; 2007; 97(Pt 2):3-13. PubMed ID: 17691284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Electrical Stimulation in Electrocorticographic Brain-Computer Interfaces: Enabling Technologies for Input to Cortex.
    Caldwell DJ; Ojemann JG; Rao RPN
    Front Neurosci; 2019; 13():804. PubMed ID: 31440127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optochemogenetic Stimulation of Transplanted iPS-NPCs Enhances Neuronal Repair and Functional Recovery after Ischemic Stroke.
    Yu SP; Tung JK; Wei ZZ; Chen D; Berglund K; Zhong W; Zhang JY; Gu X; Song M; Gross RE; Lin SZ; Wei L
    J Neurosci; 2019 Aug; 39(33):6571-6594. PubMed ID: 31263065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain-computer interfaces for basic neuroscience.
    Batista A
    Handb Clin Neurol; 2020; 168():233-247. PubMed ID: 32164855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-chip microelectronic system to interface with living cells.
    Heer F; Hafizovic S; Ugniwenko T; Frey U; Franks W; Perriard E; Perriard JC; Blau A; Ziegler C; Hierlemann A
    Biosens Bioelectron; 2007 May; 22(11):2546-53. PubMed ID: 17097869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging brain-computer interface and functional electrical stimulation technologies for movement restoration.
    Bouton CE
    Handb Clin Neurol; 2020; 168():303-309. PubMed ID: 32164861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of function by neural transplantation in the ischemic brain.
    Nishino H; Borlongan CV
    Prog Brain Res; 2000; 127():461-76. PubMed ID: 11142041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of electrical stimulation of neural tissue.
    Brocker DT; Grill WM
    Handb Clin Neurol; 2013; 116():3-18. PubMed ID: 24112880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.
    Grill WM; McDonald JW; Peckham PH; Heetderks W; Kocsis J; Weinrich M
    J Rehabil Res Dev; 2001; 38(6):633-9. PubMed ID: 11767971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity.
    Huang Y; Hajnal B; Entz L; Fabó D; Herrero JL; Mehta AD; Keller CJ
    J Neurosci; 2019 Jul; 39(31):6122-6135. PubMed ID: 31182638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation.
    Tomaskovic-Crook E; Zhang P; Ahtiainen A; Kaisvuo H; Lee CY; Beirne S; Aqrawe Z; Svirskis D; Hyttinen J; Wallace GG; Travas-Sejdic J; Crook JM
    Adv Healthc Mater; 2019 Aug; 8(15):e1900425. PubMed ID: 31168967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural tissue engineering for neuroregeneration and biohybridized interface microsystems in vivo (Part 2).
    Cullen DK; Wolf JA; Smith DH; Pfister BJ
    Crit Rev Biomed Eng; 2011; 39(3):241-59. PubMed ID: 21967304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Peptide Hydrogel-Based Soft Neural Interface Augments Brain Signals through a Three-Dimensional Electrical Network.
    Nam J; Lim HK; Kim NH; Park JK; Kang ES; Kim YT; Heo C; Lee OS; Kim SG; Yun WS; Suh M; Kim YH
    ACS Nano; 2020 Jan; 14(1):664-675. PubMed ID: 31895542
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.