BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26834704)

  • 1. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.
    Henri PA; Rommevaux-Jestin C; Lesongeur F; Mumford A; Emerson D; Godfroy A; Ménez B
    Front Microbiol; 2015; 6():1518. PubMed ID: 26834704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.
    Scott JJ; Breier JA; Luther GW; Emerson D
    PLoS One; 2015; 10(3):e0119284. PubMed ID: 25760332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Microbial Alteration and Fe Mobilization From Basaltic Rocks of the ICDP HSDP2 Drill Core, Hilo, Hawaii.
    Stranghoener M; Schippers A; Dultz S; Behrens H
    Front Microbiol; 2018; 9():1252. PubMed ID: 29963022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential for microbial oxidation of ferrous iron in basaltic glass.
    Xiong MY; Shelobolina ES; Roden EE
    Astrobiology; 2015 May; 15(5):331-40. PubMed ID: 25915449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks.
    Laufer K; Nordhoff M; Halama M; Martinez RE; Obst M; Nowak M; Stryhanyuk H; Richnow HH; Kappler A
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments.
    McBeth JM; Little BJ; Ray RI; Farrar KM; Emerson D
    Appl Environ Microbiol; 2011 Feb; 77(4):1405-12. PubMed ID: 21131509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria.
    McBeth JM; Emerson D
    Front Microbiol; 2016; 7():767. PubMed ID: 27252686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of
    McAllister SM; Polson SW; Butterfield DA; Glazer BT; Sylvan JB; Chan CS
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32071158
    [No Abstract]   [Full Text] [Related]  

  • 9. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submarine Basaltic Glass Colonization by the Heterotrophic Fe(II)-Oxidizing and Siderophore-Producing Deep-Sea Bacterium
    Sudek LA; Wanger G; Templeton AS; Staudigel H; Tebo BM
    Front Microbiol; 2017; 8():363. PubMed ID: 28344573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden in plain sight: discovery of sheath-forming, iron-oxidizing Zetaproteobacteria at Loihi Seamount, Hawaii, USA.
    Fleming EJ; Davis RE; McAllister SM; Chan CS; Moyer CL; Tebo BM; Emerson D
    FEMS Microbiol Ecol; 2013 Jul; 85(1):116-27. PubMed ID: 23480633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial analysis of Zetaproteobacteria and co-colonizers of iron mats in the Troll Wall Vent Field, Arctic Mid-Ocean Ridge.
    Vander Roost J; Thorseth IH; Dahle H
    PLoS One; 2017; 12(9):e0185008. PubMed ID: 28931087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin.
    Callac N; Rommevaux-Jestin C; Rouxel O; Lesongeur F; Liorzou C; Bollinger C; Ferrant A; Godfroy A
    Front Microbiol; 2013; 4():250. PubMed ID: 23986754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palagonitization of Basalt Glass in the Flanks of Mid-Ocean Ridges: Implications for the Bioenergetics of Oceanic Intracrustal Ecosystems.
    Türke A; Nakamura K; Bach W
    Astrobiology; 2015 Oct; 15(10):793-803. PubMed ID: 26426282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mariprofundus micogutta sp. nov., a novel iron-oxidizing zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov.
    Makita H; Tanaka E; Mitsunobu S; Miyazaki M; Nunoura T; Uematsu K; Takaki Y; Nishi S; Shimamura S; Takai K
    Arch Microbiol; 2017 Mar; 199(2):335-346. PubMed ID: 27766355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation.
    Chan CS; Fakra SC; Emerson D; Fleming EJ; Edwards KJ
    ISME J; 2011 Apr; 5(4):717-27. PubMed ID: 21107443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominance of 'Gallionella capsiferriformans' and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge.
    Fabisch M; Freyer G; Johnson CA; Büchel G; Akob DM; Neu TR; Küsel K
    Geobiology; 2016 Jan; 14(1):68-90. PubMed ID: 26407813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon adsorption onto Fe oxyhydroxide stalks produced by a lithotrophic iron-oxidizing bacteria.
    Bennett SA; Toner BM; Barco R; Edwards KJ
    Geobiology; 2014 Mar; 12(2):146-56. PubMed ID: 24428517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and ecological implications of an iron- or hydrogen-oxidizing member of the Zetaproteobacteria, Ghiorsea bivora, gen. nov., sp. nov.
    Mori JF; Scott JJ; Hager KW; Moyer CL; Küsel K; Emerson D
    ISME J; 2017 Nov; 11(11):2624-2636. PubMed ID: 28820506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats from the Lucky Strike hydrothermal field (EMSO-Azores observatory).
    Astorch-Cardona A; Odin GP; Chavagnac V; Dolla A; Gaussier H; Rommevaux C
    Appl Environ Microbiol; 2024 Feb; 90(2):e0204123. PubMed ID: 38193671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.