These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26834980)

  • 1. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.
    Kahanda I; Funk C; Verspoor K; Ben-Hur A
    F1000Res; 2015; 4():259. PubMed ID: 26834980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Methods for Prediction of Human Protein-Phenotype Associations: A Review.
    Liu L; Zhu S
    Phenomics; 2021 Aug; 1(4):171-185. PubMed ID: 36939789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations.
    Liu Y; He R; Qu Y; Zhu Y; Li D; Ling X; Xia S; Li Z; Li D
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
    Notaro M; Schubach M; Robinson PN; Valentini G
    BMC Bioinformatics; 2017 Oct; 18(1):449. PubMed ID: 29025394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HPOAnnotator: improving large-scale prediction of HPO annotations by low-rank approximation with HPO semantic similarities and multiple PPI networks.
    Gao J; Liu L; Yao S; Huang X; Mamitsuka H; Zhu S
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):187. PubMed ID: 31865916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HPOLabeler: improving prediction of human protein-phenotype associations by learning to rank.
    Liu L; Huang X; Mamitsuka H; Zhu S
    Bioinformatics; 2020 Aug; 36(14):4180-4188. PubMed ID: 32379868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HPO2GO: prediction of human phenotype ontology term associations for proteins using cross ontology annotation co-occurrences.
    Doğan T
    PeerJ; 2018; 6():e5298. PubMed ID: 30083448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting disease-related phenotypes using an integrated phenotype similarity measurement based on HPO.
    Xue H; Peng J; Shang X
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):34. PubMed ID: 30953559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2022 Jan; 38(3):799-808. PubMed ID: 34672333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontology based text mining of gene-phenotype associations: application to candidate gene prediction.
    Kafkas Ş; Hoehndorf R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30809638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curation and expansion of Human Phenotype Ontology for defined groups of inborn errors of immunity.
    Haimel M; Pazmandi J; Heredia RJ; Dmytrus J; Bal SK; Zoghi S; van Daele P; Briggs TA; Wouters C; Bader-Meunier B; Aeschlimann FA; Caorsi R; Eleftheriou D; Hoppenreijs E; Salzer E; Bakhtiar S; Derfalvi B; Saettini F; Kusters MAA; Elfeky R; Trück J; Rivière JG; van der Burg M; Gattorno M; Seidel MG; Burns S; Warnatz K; Hauck F; Brogan P; Gilmour KC; Schuetz C; Simon A; Bock C; Hambleton S; de Vries E; Robinson PN; van Gijn M; Boztug K
    J Allergy Clin Immunol; 2022 Jan; 149(1):369-378. PubMed ID: 33991581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology.
    Deng Y; Gao L; Wang B; Guo X
    PLoS One; 2015; 10(2):e0115692. PubMed ID: 25664462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HPOFiller: identifying missing protein-phenotype associations by graph convolutional network.
    Liu L; Mamitsuka H; Zhu S
    Bioinformatics; 2021 Oct; 37(19):3328-3336. PubMed ID: 33822886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting genes from phenotypes using human phenotype ontology (HPO) terms.
    Slavotinek A; Prasad H; Yip T; Rego S; Hoban H; Kvale M
    Hum Genet; 2022 Nov; 141(11):1749-1760. PubMed ID: 35357580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An online tool for measuring and visualizing phenotype similarities using HPO.
    Peng J; Xue H; Hui W; Lu J; Chen B; Jiang Q; Shang X; Wang Y
    BMC Genomics; 2018 Aug; 19(Suppl 6):571. PubMed ID: 30367579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ontological foundation for ocular phenotypes and rare eye diseases.
    Sergouniotis PI; Maxime E; Leroux D; Olry A; Thompson R; Rath A; Robinson PN; Dollfus H;
    Orphanet J Rare Dis; 2019 Jan; 14(1):8. PubMed ID: 30626441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human phenotype ontology.
    Robinson PN; Mundlos S
    Clin Genet; 2010 Jun; 77(6):525-34. PubMed ID: 20412080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.