BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26835228)

  • 41. Cellulose hydrolysis by immobilized Trichoderma reesei cellulase.
    Jones PO; Vasudevan PT
    Biotechnol Lett; 2010 Jan; 32(1):103-6. PubMed ID: 19731044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: An activity-tunable biocatalyst for extraction of lipids from microalgae.
    Chen Q; Liu D; Wu C; Yao K; Li Z; Shi N; Wen F; Gates ID
    Bioresour Technol; 2018 Sep; 263():317-324. PubMed ID: 29753933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immobilization of cellulolytic and hemicellulolytic enzymes on inorganic supports.
    Shimizu K; Ishihara M
    Biotechnol Bioeng; 1987 Feb; 29(2):236-41. PubMed ID: 18576381
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles.
    Papadopoulou A; Zarafeta D; Galanopoulou AP; Stamatis H
    Protein J; 2019 Dec; 38(6):640-648. PubMed ID: 31549278
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.
    An T; Dong Z; Lv J; Liu Y; Wang M; Wei S; Song Y; Zhang Y; Deng S
    Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):299-305. PubMed ID: 25762797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The development of nanobiocatalysis via the immobilization of cellulase on composite magnetic nanomaterial for enhanced loading capacity and catalytic activity.
    Han J; Luo P; Wang Y; Wang L; Li C; Zhang W; Dong J; Ni L
    Int J Biol Macromol; 2018 Nov; 119():692-700. PubMed ID: 30071227
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilization of cellulase onto electrospun polyacrylonitrile (PAN) nanofibrous membranes and its application to the reducing sugar production from microalgae.
    Hung TC; Fu CC; Su CH; Chen JY; Wu WT; Lin YS
    Enzyme Microb Technol; 2011 Jun; 49(1):30-7. PubMed ID: 22112268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Immobilization of tyrosinase on modified diatom biosilica: enzymatic removal of phenolic compounds from aqueous solution.
    Bayramoglu G; Akbulut A; Arica MY
    J Hazard Mater; 2013 Jan; 244-245():528-36. PubMed ID: 23245881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of the Catalytic Performance and Operational Stability of Sol-Gel-Entrapped Cellulase by Tailoring the Matrix Structure and Properties.
    Vasilescu C; Marc S; Hulka I; Paul C
    Gels; 2022 Oct; 8(10):. PubMed ID: 36286127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Covalent immobilization of alkaline proteinase on amino-functionalized magnetic nanoparticles and application in soy protein hydrolysis.
    Zhu X; Li Y; Yang G; Lv M; Zhang L
    Biotechnol Prog; 2019 Mar; 35(2):e2756. PubMed ID: 30468312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization of cellulase from newly isolated strain Bacillus subtilis TD6 using calcium alginate as a support material.
    Andriani D; Sunwoo C; Ryu HW; Prasetya B; Park DH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):29-33. PubMed ID: 21947600
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation of immobilized pepsin for extraction of collagen from bovine hide.
    Duan Y; Cheng H
    RSC Adv; 2022 Nov; 12(53):34548-34556. PubMed ID: 36545603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and CO(2) adsorption properties of aminopropyl-functionalized mesoporous silica microspheres.
    Araki S; Doi H; Sano Y; Tanaka S; Miyake Y
    J Colloid Interface Sci; 2009 Nov; 339(2):382-9. PubMed ID: 19732905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of enzyme loading on the efficacy and recovery of cellulolytic enzymes immobilized on enzymogel nanoparticles.
    Samaratunga A; Kudina O; Nahar N; Zakharchenko A; Minko S; Voronov A; Pryor SW
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2872-82. PubMed ID: 25564204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase.
    Borges DG; Baraldo A; Farinas CS; Giordano Rde L; Tardioli PW
    Bioresour Technol; 2014 Sep; 167():206-13. PubMed ID: 24983691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preparation of a pH-sensitive polyacrylate amphiphilic copolymer and its application in cellulase immobilization.
    Liang W; Cao X
    Bioresour Technol; 2012 Jul; 116():140-6. PubMed ID: 22609668
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immobilization of cellulase on a core-shell structured metal-organic framework composites: Better inhibitors tolerance and easier recycling.
    Qi B; Luo J; Wan Y
    Bioresour Technol; 2018 Nov; 268():577-582. PubMed ID: 30130719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite.
    Dekker RF
    Appl Biochem Biotechnol; 1989 Dec; 22(3):289-310. PubMed ID: 2512853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.
    Tao QL; Li Y; Shi Y; Liu RJ; Zhang YW; Guo J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6055-60. PubMed ID: 27427671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.