BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26835367)

  • 1. Emerging technologies in paediatric leukaemia.
    Dixon-McIver A
    Transl Pediatr; 2015 Apr; 4(2):116-24. PubMed ID: 26835367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apply innovative technologies to explore cancer genome.
    Shih IeM; Wang TL
    Curr Opin Oncol; 2005 Jan; 17(1):33-8. PubMed ID: 15608510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden aberrations diagnosed by interphase fluorescence in situ hybridisation and spectral karyotyping in childhood acute lymphoblastic leukaemia.
    Nordgren A
    Leuk Lymphoma; 2003 Dec; 44(12):2039-53. PubMed ID: 14959846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases.
    Nordgren A; Heyman M; Sahlén S; Schoumans J; Söderhäll S; Nordenskjöld M; Blennow E
    Eur J Haematol; 2002 Jan; 68(1):31-41. PubMed ID: 11952819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution comparative genomic hybridisation yields a high detection rate of chromosomal aberrations in childhood acute lymphoblastic leukaemia.
    Kristensen TD; Wesenberg F; Jonsson OG; Carlsen NT; Forestier E; Kirchhoff M; Lundsteen C; Schmiegelow K
    Eur J Haematol; 2003 Jun; 70(6):363-72. PubMed ID: 12756018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular karyotyping: from microscope to SNP arrays.
    Gijsbers AC; Ruivenkamp CA
    Horm Res Paediatr; 2011; 76(3):208-13. PubMed ID: 21865676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia.
    Simons A; Stevens-Kroef M; El Idrissi-Zaynoun N; van Gessel S; Weghuis DO; van den Berg E; Waanders E; Hoogerbrugge P; Kuiper R; van Kessel AG
    Genes Chromosomes Cancer; 2011 Dec; 50(12):969-81. PubMed ID: 21882283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligo-based aCGH analysis reveals cryptic unbalanced der(6)t(X;6) in pediatric t(12;21)-positive acute lymphoblastic leukemia.
    Kjeldsen E
    Exp Mol Pathol; 2016 Aug; 101(1):38-43. PubMed ID: 27215399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for manufacturing whole-genome microarrays by rolling circle amplification.
    Smirnov DA; Burdick JT; Morley M; Cheung VG
    Genes Chromosomes Cancer; 2004 May; 40(1):72-7. PubMed ID: 15034872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of SNP genotype arrays to determine somatic changes in cancer.
    Gupta M; Young BD
    Methods Mol Biol; 2009; 538():179-206. PubMed ID: 19277572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interphase fluorescence in situ hybridization and spectral karyotyping reveals hidden genetic aberrations in children with acute lymphoblastic leukaemia and a normal banded karyotype.
    Nordgren A; Schoumans J; Söderhäll S; Nordenskjöld M; Blennow E
    Br J Haematol; 2001 Sep; 114(4):786-93. PubMed ID: 11564064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.
    Ferret Y; Caillault A; Sebda S; Duez M; Grardel N; Duployez N; Villenet C; Figeac M; Preudhomme C; Salson M; Giraud M
    Br J Haematol; 2016 May; 173(3):413-20. PubMed ID: 26898266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cytogenetic analysis of childhood acute lymphoblastic leukemia].
    Liu Q; Jiang H; Sun HJ; Song YJ; Bao LM
    Zhonghua Xue Ye Xue Za Zhi; 2012 Apr; 33(4):282-5. PubMed ID: 22781718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of conventional cytogenetics, comparative genomic hybridisation and interphase fluorescence in situ hybridisation for the detection of genomic rearrangements in acute leukaemia.
    McGrattan P; Campbell S; Cuthbert R; Jones FG; McMullin MF; Humphreys M
    J Clin Pathol; 2008 Aug; 61(8):903-8. PubMed ID: 18474541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?
    Peterson JF; Aggarwal N; Smith CA; Gollin SM; Surti U; Rajkovic A; Swerdlow SH; Yatsenko SA
    Oncotarget; 2015 Aug; 6(22):18845-62. PubMed ID: 26299921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies.
    Maciejewski JP; Tiu RV; O'Keefe C
    Br J Haematol; 2009 Sep; 146(5):479-88. PubMed ID: 19563474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside.
    Boer JM; den Boer ML
    Eur J Cancer; 2017 Sep; 82():203-218. PubMed ID: 28709134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing.
    Mack EKM; Marquardt A; Langer D; Ross P; Ultsch A; Kiehl MG; Mack HID; Haferlach T; Neubauer A; Brendel C
    Haematologica; 2019 Feb; 104(2):277-287. PubMed ID: 30190345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays.
    Cai WW; Mao JH; Chow CW; Damani S; Balmain A; Bradley A
    Nat Biotechnol; 2002 Apr; 20(4):393-6. PubMed ID: 11923847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of chromosomal microarray for prenatal diagnosis.
    ; Dugoff L; Norton ME; Kuller JA
    Am J Obstet Gynecol; 2016 Oct; 215(4):B2-9. PubMed ID: 27427470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.