These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26835485)

  • 21. Single neurons are differently involved in stimulus-specific oscillations in cat visual cortex.
    Eckhorn R; Obermueller A
    Exp Brain Res; 1993; 95(1):177-82. PubMed ID: 8405251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.
    Makadia PA; Najjar SA; Saloman JL; Adelman P; Feng B; Margiotta JF; Albers KM; Davis BM
    J Neurosci; 2018 Jun; 38(25):5788-5798. PubMed ID: 29789376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The treatment of neurological diseases under a new light: the importance of optogenetics.
    Kokaia M; Sørensen AT
    Drugs Today (Barc); 2011 Jan; 47(1):53-62. PubMed ID: 21373649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing channelrhodopsin-2.
    Campagnola L; Wang H; Zylka MJ
    J Neurosci Methods; 2008 Mar; 169(1):27-33. PubMed ID: 18187202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2.
    Wu BM; Leng TD; Inoue K; Li J; Xiong ZG
    CNS Neurosci Ther; 2017 Mar; 23(3):216-221. PubMed ID: 27917616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-mixed dental cement for fixing fiber optic ferrules prevents visually triggered locomotive enhancement in mice upon optogenetic stimulation.
    Araragi N; Alenina N; Bader M
    Heliyon; 2022 Jan; 8(1):e08692. PubMed ID: 35024491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulating Neurons with Heterologously Expressed Light-Gated Ion Channels.
    Wiegert JS; Gee CE; Oertner TG
    Cold Spring Harb Protoc; 2017 Feb; 2017(2):. PubMed ID: 28148885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Method for Removal of Deep Brain Stimulation Artifact From Local Field Potentials.
    Qian X; Chen Y; Feng Y; Ma B; Hao H; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2217-2226. PubMed ID: 28113981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Encode the "STOP" command by photo-stimulation for precise control of rat-robot.
    Chen S; Qu Y; Guo S; Shi Z; Xu K; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2172-5. PubMed ID: 24110152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extrapolating meaning from local field potential recordings.
    Harris Bozer AL; Uhelski ML; Li AL
    J Integr Neurosci; 2017; 16(1):107-126. PubMed ID: 28891502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene neural interfaces for artifact free optogenetics.
    Hongming Lyu ; Xin Liu ; Rogers N; Gilja V; Kuzum D
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4204-4207. PubMed ID: 28269210
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons.
    Assaf F; Schiller Y
    J Neurophysiol; 2016 Oct; 116(4):1694-1704. PubMed ID: 27486107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications.
    Schanze T; Eckhorn R
    Int J Psychophysiol; 1997 Jun; 26(1-3):171-89. PubMed ID: 9203002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].
    Wang CQ; Chen Q; Zhang L; Xu JM; Lin LN
    Sheng Li Xue Bao; 2014 Dec; 66(6):746-55. PubMed ID: 25516525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origins of 1/f2 scaling in the power spectrum of intracortical local field potential.
    Baranauskas G; Maggiolini E; Vato A; Angotzi G; Bonfanti A; Zambra G; Spinelli A; Fadiga L
    J Neurophysiol; 2012 Feb; 107(3):984-94. PubMed ID: 22090461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2.
    Reinbothe TM; Safi F; Axelsson AS; Mollet IG; Rosengren AH
    Islets; 2014; 6(1):e28095. PubMed ID: 25483880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Extracellular Recordings in the Mouse Hippocampus and Prefrontal Cortex.
    Sun D; Amiri M; Weston L; French C
    J Vis Exp; 2024 Feb; (204):. PubMed ID: 38436359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cause of Subharmonics in Local Field Potentials Recorded by Sensing-Enabled Neurostimulator.
    Chen Y; Ma B; Hao H; Li L
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6159-6162. PubMed ID: 34892522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures.
    Kramer MA; Tort AB; Kopell NJ
    J Neurosci Methods; 2008 May; 170(2):352-7. PubMed ID: 18328571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.