These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26835493)

  • 1. Model predictions for the wide-angle x-ray scatter signals of healthy and malignant breast duct biopsies.
    LeClair RJ; Ferreira A; McDonald N; Laamanen C; Tang RY
    J Med Imaging (Bellingham); 2015 Oct; 2(4):043502. PubMed ID: 26835493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WAXS fat subtraction model to estimate differential linear scattering coefficients of fatless breast tissue: phantom materials evaluation.
    Tang RY; Laamanen C; McDonald N; LeClair RJ
    Med Phys; 2014 May; 41(5):053501. PubMed ID: 24784407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method to estimate the fractional fat volume within a ROI of a breast biopsy for WAXS applications: animal tissue evaluation.
    Tang RY; McDonald N; Laamanen C; LeClair RJ
    Med Phys; 2014 Nov; 41(11):113501. PubMed ID: 25370672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements.
    LeClair RJ; Boileau MM; Wang Y
    Med Phys; 2006 Apr; 33(4):959-67. PubMed ID: 16696472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum momentum transfer arguments for x-ray forward scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 2002 Dec; 29(12):2881-90. PubMed ID: 12512723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.
    Shikhaliev PM
    Phys Med Biol; 2006 Sep; 51(17):4267-87. PubMed ID: 16912381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT energy weighting in the presence of scatter and limited energy resolution.
    Schmidt TG
    Med Phys; 2010 Mar; 37(3):1056-67. PubMed ID: 20384241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative features of ductal carcinoma in situ and infiltrating ductal carcinoma of the breast on fine-needle aspiration biopsy.
    Wang HH; Ducatman BS; Eick D
    Am J Clin Pathol; 1989 Dec; 92(6):736-40. PubMed ID: 2556017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.
    Chen H; Xu C; Persson M; Danielsson M
    J Med Imaging (Bellingham); 2015 Oct; 2(4):043504. PubMed ID: 26835495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications.
    Fraser JL; Raza S; Chorny K; Connolly JL; Schnitt SJ
    Am J Surg Pathol; 1998 Dec; 22(12):1521-7. PubMed ID: 9850178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semianalytic model to investigate the potential applications of x-ray scatter imaging.
    Leclair RJ; Johns PC
    Med Phys; 1998 Jun; 25(6):1008-20. PubMed ID: 9650191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Signatures of X-ray Scatter Using Energy-Resolving Photon-Counting Detectors.
    Lewis CE; Das M
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for estimating the intensity of scattered radiation using a scatter generation model.
    Honda M; Kikuchi K; Komatsu K
    Med Phys; 1991; 18(2):219-26. PubMed ID: 2046608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed tomography with energy-resolved detection: a feasibility study.
    Shikhaliev PM
    Phys Med Biol; 2008 Mar; 53(5):1475-95. PubMed ID: 18296774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of small-angle X-ray scattering for differentiation among breast tumors.
    Changizi V; Kheradmand AA; Oghabian MA
    J Med Phys; 2008 Jan; 33(1):19-23. PubMed ID: 20041048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ductal carcinoma in situ and atypical ductal hyperplasia of the breast diagnosed at stereotactic core biopsy.
    Méndez I; Andreu FJ; Sáez E; Sentís M; Jurado I; Cabezuelo MA; Castañer E; Gallardo X; Díaz-Ruiz MJ; López E; Marco V
    Breast J; 2001; 7(1):14-8. PubMed ID: 11348410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Compton-scatter imaging with an analytical simulation method.
    Jones KC; Redler G; Templeton A; Bernard D; Turian JV; Chu JCH
    Phys Med Biol; 2018 Jan; 63(2):025016. PubMed ID: 29243663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long term clinical follow-up of atypical ductal hyperplasia and lobular carcinoma in situ in breast core needle biopsies.
    Renshaw AA; Gould EW
    Pathology; 2016 Jan; 48(1):25-9. PubMed ID: 27020205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of primary and scattered photon fluence for mammographic x-ray image quantification.
    Tromans CE; Cocker MR; Brady SM
    Phys Med Biol; 2012 Oct; 57(20):6541-70. PubMed ID: 23010667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of tumor uptake with molecular breast imaging.
    Bache ST; Kappadath SC
    Med Phys; 2017 Sep; 44(9):4593-4607. PubMed ID: 28600857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.