These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26835785)

  • 1. Comparing Vibrationally Averaged Nuclear Shielding Constants by Quantum Diffusion Monte Carlo and Second-Order Perturbation Theory.
    Ng YH; Bettens RP
    J Phys Chem A; 2016 Mar; 120(8):1297-306. PubMed ID: 26835785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The isotropic nuclear magnetic shielding constants of acetone in supercritical water: a sequential Monte Carlo/quantum mechanics study including solute polarization.
    Fonseca TL; Coutinho K; Canuto S
    J Chem Phys; 2008 Jul; 129(3):034502. PubMed ID: 18647026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpolated potential energy surfaces: How accurate do the second derivatives have to be?
    Crittenden DL; Jordan MJ
    J Chem Phys; 2005 Jan; 122(4):44102. PubMed ID: 15740230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.
    Bettens RP
    J Am Chem Soc; 2003 Jan; 125(2):584-7. PubMed ID: 12517175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR shielding constants in PH3, absolute shielding scale, and the nuclear magnetic moment of 31P.
    Lantto P; Jackowski K; Makulski W; Olejniczak M; Jaszuński M
    J Phys Chem A; 2011 Sep; 115(38):10617-23. PubMed ID: 21863791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency considerations in the construction of interpolated potential energy surfaces for the calculation of quantum observables by diffusion Monte Carlo.
    Crittenden DL; Thompson KC; Chebib M; Jordan MJ
    J Chem Phys; 2004 Nov; 121(20):9844-54. PubMed ID: 15549857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using fixed-node diffusion Monte Carlo to investigate the effects of rotation-vibration coupling in highly fluxional asymmetric top molecules: application to H2D+.
    Petit AS; Wellen BA; McCoy AB
    J Chem Phys; 2013 Jan; 138(3):034105. PubMed ID: 23343266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio and relativistic DFT study of spin-rotation and NMR shielding constants in XF₆ molecules, X = S, Se, Te, Mo, and W.
    Ruud K; Demissie TB; Jaszuński M
    J Chem Phys; 2014 May; 140(19):194308. PubMed ID: 24852539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-rotation and NMR shielding constants in XF molecules (X = B, Al, Ga, In, and Tl).
    Jaszuński M; Demissie TB; Ruud K
    J Phys Chem A; 2014 Oct; 118(40):9588-95. PubMed ID: 25192304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotropic magnetic shielding constants of retinal derivatives in aprotic and protic solvents.
    Colherinhas G; Fonseca TL; Castro MA; Coutinho K; Canuto S
    J Chem Phys; 2013 Sep; 139(9):094502. PubMed ID: 24028122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diffusion quantum Monte Carlo study of geometries and harmonic frequencies of molecules.
    Lu SI
    J Chem Phys; 2004 Jan; 120(1):14-7. PubMed ID: 15267255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the extent of intramolecular hydrogen bonding in gas-phase and hydrated 1,2-ethanediol.
    Crittenden DL; Thompson KC; Jordan MJ
    J Phys Chem A; 2005 Mar; 109(12):2971-7. PubMed ID: 16833617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum and classical studies of vibrational motion of CH5+ on a global potential energy surface obtained from a novel ab initio direct dynamics approach.
    Brown A; McCoy AB; Braams BJ; Jin Z; Bowman JM
    J Chem Phys; 2004 Sep; 121(9):4105-16. PubMed ID: 15332956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CH5+: chemistry's chameleon unmasked.
    Thompson KC; Crittenden DL; Jordan MJ
    J Am Chem Soc; 2005 Apr; 127(13):4954-8. PubMed ID: 15796561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-rotation and NMR shielding constants in HCl.
    Jaszuński M; Repisky M; Demissie TB; Komorovsky S; Malkin E; Ruud K; Garbacz P; Jackowski K; Makulski W
    J Chem Phys; 2013 Dec; 139(23):234302. PubMed ID: 24359362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.
    Kongsted J; Nielsen CB; Mikkelsen KV; Christiansen O; Ruud K
    J Chem Phys; 2007 Jan; 126(3):034510. PubMed ID: 17249887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.
    Hanni M; Lantto P; Runeberg N; Jokisaari J; Vaara J
    J Chem Phys; 2004 Sep; 121(12):5908-19. PubMed ID: 15367019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic shielding for hydrogen in selected isolated molecules.
    Garbacz P; Jackowski K; Makulski W; Wasylishen RE
    J Phys Chem A; 2012 Dec; 116(48):11896-904. PubMed ID: 23116254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.