These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 26835788)
21. Reduction-sensitive micelles with sheddable PEG shells self-assembled from a Y-shaped amphiphilic polymer for intracellular doxorubicine release. Cui C; Yu P; Wu M; Zhang Y; Liu L; Wu B; Wang CX; Zhuo RX; Huang SW Colloids Surf B Biointerfaces; 2015 May; 129():137-45. PubMed ID: 25843367 [TBL] [Abstract][Full Text] [Related]
22. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: preparation, in vitro and in vivo evaluation. Li Q; Lv S; Tang Z; Liu M; Zhang D; Yang Y; Chen X Int J Pharm; 2014 Aug; 471(1-2):412-20. PubMed ID: 24905776 [TBL] [Abstract][Full Text] [Related]
23. Doxorubicin-Bound Albumin Nanoparticles Containing a TRAIL Protein for Targeted Treatment of Colon Cancer. Thao le Q; Byeon HJ; Lee C; Lee S; Lee ES; Choi YW; Choi HG; Park ES; Lee KC; Youn YS Pharm Res; 2016 Mar; 33(3):615-26. PubMed ID: 26526555 [TBL] [Abstract][Full Text] [Related]
24. Co-delivery of anti-vascular endothelial growth factor siRNA and doxorubicin by multifunctional polymeric micelle for tumor growth suppression. Huang HY; Kuo WT; Chou MJ; Huang YY J Biomed Mater Res A; 2011 Jun; 97(3):330-8. PubMed ID: 21465641 [TBL] [Abstract][Full Text] [Related]
25. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. Peng D; Gao H; Huang P; Shi X; Zhou J; Zhang J; Dong A; Tang H; Wang W; Deng L J Biomater Sci Polym Ed; 2019 Jul; 30(10):877-893. PubMed ID: 31025910 [TBL] [Abstract][Full Text] [Related]
26. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Cui C; Xue YN; Wu M; Zhang Y; Yu P; Liu L; Zhuo RX; Huang SW Biomaterials; 2013 May; 34(15):3858-69. PubMed ID: 23452389 [TBL] [Abstract][Full Text] [Related]
27. Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery. Cao W; Zhou J; Mann A; Wang Y; Zhu L Biomacromolecules; 2011 Jul; 12(7):2697-707. PubMed ID: 21619062 [TBL] [Abstract][Full Text] [Related]
28. Enhanced Lysosomal Escape of pH-Responsive Polyethylenimine-Betaine Functionalized Carbon Nanotube for the Codelivery of Survivin Small Interfering RNA and Doxorubicin. Cao Y; Huang HY; Chen LQ; Du HH; Cui JH; Zhang LW; Lee BJ; Cao QR ACS Appl Mater Interfaces; 2019 Mar; 11(10):9763-9776. PubMed ID: 30776886 [TBL] [Abstract][Full Text] [Related]
29. Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Han S; Cheng Q; Wu Y; Zhou J; Long X; Wei T; Huang Y; Zheng S; Zhang J; Deng L; Wang X; Liang XJ; Cao H; Liang Z; Dong A Biomaterials; 2015 Apr; 48():45-55. PubMed ID: 25701031 [TBL] [Abstract][Full Text] [Related]
30. Hyperbranched-hyperbranched polymeric nanoassembly to mediate controllable co-delivery of siRNA and drug for synergistic tumor therapy. Jia HZ; Zhang W; Zhu JY; Yang B; Chen S; Chen G; Zhao YF; Feng J; Zhang XZ J Control Release; 2015 Oct; 216():9-17. PubMed ID: 26272764 [TBL] [Abstract][Full Text] [Related]
31. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Wiradharma N; Tong YW; Yang YY Biomaterials; 2009 Jun; 30(17):3100-9. PubMed ID: 19342093 [TBL] [Abstract][Full Text] [Related]
33. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Zhang C; Zhao L; Dong Y; Zhang X; Lin J; Chen Z Eur J Pharm Biopharm; 2010 Sep; 76(1):10-6. PubMed ID: 20472060 [TBL] [Abstract][Full Text] [Related]
34. Using doxorubicin and siRNA-loaded heptapeptide-conjugated nanoparticles to enhance chemosensitization in epidermal growth factor receptor high-expressed breast cancer cells. Liu CW; Lin WJ J Drug Target; 2013 Sep; 21(8):776-86. PubMed ID: 23829387 [TBL] [Abstract][Full Text] [Related]
35. Doxorubicin and anti-VEGF siRNA co-delivery via nano-graphene oxide for enhanced cancer therapy in vitro and in vivo. Sun Q; Wang X; Cui C; Li J; Wang Y Int J Nanomedicine; 2018; 13():3713-3728. PubMed ID: 29983564 [TBL] [Abstract][Full Text] [Related]
36. SiRNA/DOX lodeded chitosan based nanoparticles: Development, Characterization and in vitro evaluation on A549 lung cancer cell line. Seifi-Najmi M; Hajivalili M; Safaralizadeh R; Sadreddini S; Esmaeili S; Razavi R; Ahmadi M; Mikaeili H; Baradaran B; Shams-Asenjan K; Yousefi M Cell Mol Biol (Noisy-le-grand); 2016 Sep; 62(11):87-94. PubMed ID: 27755958 [TBL] [Abstract][Full Text] [Related]
37. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
38. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Garbuzenko OB; Saad M; Betigeri S; Zhang M; Vetcher AA; Soldatenkov VA; Reimer DC; Pozharov VP; Minko T Pharm Res; 2009 Feb; 26(2):382-94. PubMed ID: 18958402 [TBL] [Abstract][Full Text] [Related]
39. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Xiong XB; Ma Z; Lai R; Lavasanifar A Biomaterials; 2010 Feb; 31(4):757-68. PubMed ID: 19818492 [TBL] [Abstract][Full Text] [Related]
40. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy. Xia Y; Xu T; Wang C; Li Y; Lin Z; Zhao M; Zhu B Int J Nanomedicine; 2018; 13():143-159. PubMed ID: 29317822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]