These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26835962)

  • 1. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.
    Moon I; Yi F; Rappaz B
    Appl Opt; 2016 Jan; 55(3):A86-94. PubMed ID: 26835962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy.
    Yi F; Moon I; Lee YH
    J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells.
    Moon I; Javidi B; Yi F; Boss D; Marquet P
    Opt Express; 2012 Apr; 20(9):10295-309. PubMed ID: 22535119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.
    Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P
    Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and classification of red blood cells using digital holographic microscopy and data clustering with discriminant analysis.
    Liu R; Dey DK; Boss D; Marquet P; Javidi B
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1204-10. PubMed ID: 21643406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated three-dimensional tracking of living cells by digital holographic microscopy.
    Langehanenberg P; Ivanova L; Bernhardt I; Ketelhut S; Vollmer A; Dirksen D; Georgiev G; von Bally G; Kemper B
    J Biomed Opt; 2009; 14(1):014018. PubMed ID: 19256706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2015 Nov; 20(11):111218. PubMed ID: 26502322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical criterion for focusing of unstained cell samples using a digital holographic microscope.
    Malik R; Sharma P; Poulose S; Ahlawat S; Khare K
    J Microsc; 2020 Aug; 279(2):114-122. PubMed ID: 32441768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lossless and lossy compression of quantitative phase images of red blood cells obtained by digital holographic imaging.
    Jaferzadeh K; Gholami S; Moon I
    Appl Opt; 2016 Dec; 55(36):10409-10416. PubMed ID: 28059271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging.
    Jaferzadeh K; Moon I
    J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer.
    Rappaz B; Barbul A; Emery Y; Korenstein R; Depeursinge C; Magistretti PJ; Marquet P
    Cytometry A; 2008 Oct; 73(10):895-903. PubMed ID: 18615599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of multiple red blood cells with digital holographic microscopy.
    Yi F; Moon I; Javidi B; Boss D; Marquet P
    J Biomed Opt; 2013 Feb; 18(2):26006. PubMed ID: 23370481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D morphometry of red blood cells by digital holography.
    Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P
    Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection and analysis of cell motility in phase-contrast time-lapse images using a combination of maximally stable extremal regions and Kalman filter approaches.
    Kaakinen M; Huttunen S; Paavolainen L; Marjomäki V; Heikkilä J; Eklund L
    J Microsc; 2014 Jan; 253(1):65-78. PubMed ID: 24279418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers.
    Liu J; Zhu L; Zhang F; Dong M; Qu X
    Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell morphology-based classification of red blood cells using holographic imaging informatics.
    Yi F; Moon I; Javidi B
    Biomed Opt Express; 2016 Jun; 7(6):2385-99. PubMed ID: 27375953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm.
    Molaei M; Sheng J
    Opt Express; 2014 Dec; 22(26):32119-37. PubMed ID: 25607177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy.
    Kim Y; Kim J; Seo E; Lee SJ
    Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell shape identification using digital holographic microscopy.
    Zakrisson J; Schedin S; Andersson M
    Appl Opt; 2015 Aug; 54(24):7442-8. PubMed ID: 26368783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust algorithm for segmenting and tracking clustered cells in time-lapse fluorescent microscopy.
    Tarnawski W; Kurtcuoglu V; Lorek P; Bodych M; Rotter J; Muszkieta M; Piwowar Ł; Poulikakos D; Majkowski M; Ferrari A
    IEEE J Biomed Health Inform; 2013 Jul; 17(4):862-9. PubMed ID: 25055315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.