These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26836076)

  • 1. Focal length calibration of an electrically tunable lens by digital holography.
    Wang Z; Qu W; Yang F; Asundi AK
    Appl Opt; 2016 Feb; 55(4):749-56. PubMed ID: 26836076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens.
    Qu Y; Hu Y
    Microsc Res Tech; 2019 Feb; 82(2):101-113. PubMed ID: 30451353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic aperture microscopy based on referenceless phase retrieval with an electrically tunable lens.
    Lee DJ; Han K; Lee HJ; Weiner AM
    Appl Opt; 2015 Jun; 54(17):5346-52. PubMed ID: 26192834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple, non-mechanical and automatic calibration approach for axial-scanning microscopy with an electrically tunable lens.
    Li S; Zhao Y; Wen W; Ma Y; Liu S; Chen G; Ye Y
    Microsc Res Tech; 2023 Oct; 86(10):1391-1400. PubMed ID: 37119118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens.
    Deng D; Peng J; Qu W; Wu Y; Liu X; He W; Peng X
    Appl Opt; 2017 Jul; 56(21):6007-6014. PubMed ID: 29047923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital holographic testing of biconvex lenses.
    Chhaniwal VK; Kihiko JM; Dubey S; Shearon G; Javidi B; Anand A
    Appl Opt; 2013 Dec; 52(36):8714-22. PubMed ID: 24513936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens.
    Schubert R; Vollmer A; Ketelhut S; Kemper B
    Biomed Opt Express; 2014 Dec; 5(12):4213-22. PubMed ID: 25574433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy.
    Trujillo C; Doblas A; Saavedra G; Martínez-Corral M; García-Sucerquia J
    Opt Lett; 2016 Apr; 41(7):1416-9. PubMed ID: 27192250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion tuning with a varifocal diffractive-refractive hybrid lens.
    Harm W; Roider C; Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Mar; 22(5):5260-9. PubMed ID: 24663866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens.
    Doblas A; Hincapie-Zuluaga D; Saavedra G; Martínez-Corral M; Garcia-Sucerquia J
    Appl Opt; 2015 Jun; 54(16):5229-33. PubMed ID: 26192688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens.
    Jeong HJ; Yoo H; Gweon D
    Opt Express; 2016 Feb; 24(4):3806-16. PubMed ID: 26907034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration method for the electrically tunable lens based on shape-changing polymer.
    Lu Z; Cai L
    Opt Express; 2020 Oct; 28(21):31140-31162. PubMed ID: 33115095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speeded-Up Focus Control of Electrically Tunable Lens by Sparse Optimization.
    Iwai D; Izawa H; Kashima K; Ueda T; Sato K
    Sci Rep; 2019 Aug; 9(1):12365. PubMed ID: 31451748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative phase imaging of live cells by digital holographic microscopy and transport of intensity equation methods.
    Wittkopp JM; Khoo TC; Carney S; Pisila K; Bahreini SJ; Tubbesing K; Mahajan S; Sharikova A; Petruccelli JC; Khmaladze A
    Opt Express; 2020 Mar; 28(5):6123-6133. PubMed ID: 32225868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Tunable Lens (ETL)-Based Variable Focus Imaging System for Parametric Surface Texture Analysis of Materials.
    Nirwan JS; Lou S; Hussain S; Nauman M; Hussain T; Conway BR; Ghori MU
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and wavefront characterization of an electrically tunable aspherical optofluidic lens.
    Mishra K; Narayanan A; Mugele F
    Opt Express; 2019 Jun; 27(13):17601-17609. PubMed ID: 31252717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A holographic projection system with an electrically tuning and continuously adjustable optical zoom.
    Lin HC; Collings N; Chen MS; Lin YH
    Opt Express; 2012 Dec; 20(25):27222-9. PubMed ID: 23262672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.
    Moghaddam MS; Latifi H; Shahraki H; Cheri MS
    Appl Opt; 2015 Apr; 54(10):3010-7. PubMed ID: 25967216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an autofocusing system using an electrically tunable lens in large area holographic lithography.
    Hou R; Yu J; Huang Y; Ke H; Liu H
    Appl Opt; 2020 Mar; 59(8):2521-2529. PubMed ID: 32225788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave.
    Anand A; Chhaniwal VK
    Appl Opt; 2007 Apr; 46(11):2022-6. PubMed ID: 17384716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.