BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26836200)

  • 1. Contaminant source reconstruction by empirical Bayes and Akaike's Bayesian Information Criterion.
    Zanini A; Woodbury AD
    J Contam Hydrol; 2016; 185-186():74-86. PubMed ID: 26836200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contaminant point source localization error estimates as functions of data quantity and model quality.
    Hansen SK; Vesselinov VV
    J Contam Hydrol; 2016 Oct; 193():74-85. PubMed ID: 27639975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel heuristic search strategy based on a Bayesian approach for simultaneous recognition of contaminant sources and aquifer parameters at DNAPL-contaminated sites.
    Lu W; Wang H; Li J
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):37134-37148. PubMed ID: 32583106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian maximum entropy-based methodology for optimal spatiotemporal design of groundwater monitoring networks.
    Hosseini M; Kerachian R
    Environ Monit Assess; 2017 Sep; 189(9):433. PubMed ID: 28779429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.
    Yu S; Hwang SI; Yun ST; Chae G; Lee D; Kim KE
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24816-24843. PubMed ID: 28913678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin.
    Cha Y; Kim YM; Choi JW; Sthiannopkao S; Cho KH
    Chemosphere; 2016 Jan; 143():50-6. PubMed ID: 25796421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dilution and volatilization of groundwater contaminant discharges in streams.
    Aisopou A; Bjerg PL; Sonne AT; Balbarini N; Rosenberg L; Binning PJ
    J Contam Hydrol; 2015 Jan; 172():71-83. PubMed ID: 25496819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Kriging surrogate model coupled in simulation-optimization approach for identifying release history of groundwater sources.
    Zhao Y; Lu W; Xiao C
    J Contam Hydrol; 2016; 185-186():51-60. PubMed ID: 26826982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling.
    Rajib AI; Assumaning GA; Chang SY; Addai EB
    Water Environ Res; 2017 Nov; 89(11):1952-1960. PubMed ID: 29080564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contaminant source identification using semi-supervised machine learning.
    Vesselinov VV; Alexandrov BS; O'Malley D
    J Contam Hydrol; 2018 May; 212():134-142. PubMed ID: 29174719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.
    Colombani N; Mastrocicco M; Prommer H; Sbarbati C; Petitta M
    J Contam Hydrol; 2015 Aug; 179():116-31. PubMed ID: 26093106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece).
    Matiatos I
    Sci Total Environ; 2016 Jan; 541():802-814. PubMed ID: 26437351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL.
    Johnston CD; Davis GB; Bastow TP; Annable MD; Trefry MG; Furness A; Geste Y; Woodbury RJ; Rao PS; Rhodes S
    J Contam Hydrol; 2013 Jan; 144(1):122-37. PubMed ID: 23247401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly parameterized inversion of groundwater reactive transport for a complex field site.
    Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H
    J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study.
    Oostrom M; Truex MJ; Last GV; Strickland CE; Tartakovsky GD
    J Contam Hydrol; 2016 Jun; 189():27-43. PubMed ID: 27107320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran.
    Mirzaei R; Sakizadeh M
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2758-69. PubMed ID: 26446732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.
    Prakash O; Datta B
    Environ Monit Assess; 2013 Jul; 185(7):5611-26. PubMed ID: 23229277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating the effectiveness of a geostatistical approach with groundwater flow modeling for three-dimensional estimation of a contaminant plume.
    Takai S; Shimada T; Takeda S; Koike K
    J Contam Hydrol; 2022 Dec; 251():104097. PubMed ID: 36302322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally efficient approach for identification of fuzzy dynamic groundwater sampling network.
    Kumari K; Jain S; Dhar A
    Environ Monit Assess; 2019 Apr; 191(5):310. PubMed ID: 31030264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.