These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26836201)

  • 21. In vivo study on biocompatibility and bonding strength of hydroxyapatite-20vol%Ti composite with bone tissues in the rabbit.
    Chu CL; Xue XY; Zhu JC; Yin ZD
    Biomed Mater Eng; 2006; 16(3):203-13. PubMed ID: 16518019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety, osseointegration, and bone ingrowth analysis of PMMA-based porous cement on animal metaphyseal bone defect model.
    Cimatti B; Santos MAD; Brassesco MS; Okano LT; Barboza WM; Nogueira-Barbosa MH; Engel EE
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):649-658. PubMed ID: 28276202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured thick 3D nanofibrous scaffold can induce bone.
    Eap S; Morand D; Clauss F; Huck O; Stoltz JF; Lutz JC; Gottenberg JE; Benkirane-Jessel N; Keller L; Fioretti F
    Biomed Mater Eng; 2015; 25(1 Suppl):79-85. PubMed ID: 25538059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hollow hydroxyapatite microspheres: a novel bioactive and osteoconductive carrier for controlled release of bone morphogenetic protein-2 in bone regeneration.
    Xiao W; Fu H; Rahaman MN; Liu Y; Bal BS
    Acta Biomater; 2013 Sep; 9(9):8374-83. PubMed ID: 23747325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new iron calcium phosphate material to improve the osteoconductive properties of a biodegradable ceramic: a study in rabbit calvaria.
    Manchón A; Hamdan Alkhraisat M; Rueda-Rodriguez C; Prados-Frutos JC; Torres J; Lucas-Aparicio J; Ewald A; Gbureck U; López-Cabarcos E
    Biomed Mater; 2015 Oct; 10(5):055012. PubMed ID: 26481113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly porous titanium scaffolds for orthopaedic applications.
    Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and mechanical characterization of porous titanium bone substitutes.
    Barbas A; Bonnet AS; Lipinski P; Pesci R; Dubois G
    J Mech Behav Biomed Mater; 2012 May; 9():34-44. PubMed ID: 22498281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.
    Braem A; Chaudhari A; Vivan Cardoso M; Schrooten J; Duyck J; Vleugels J
    Acta Biomater; 2014 Feb; 10(2):986-95. PubMed ID: 24161385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits.
    Itälä AI; Ylänen HO; Ekholm C; Karlsson KH; Aro HT
    J Biomed Mater Res; 2001; 58(6):679-83. PubMed ID: 11745521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering.
    Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L
    Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: A comprehensive study based on 3D-printing technology.
    Luo C; Wang C; Wu X; Xie X; Wang C; Zhao C; Zou C; Lv F; Huang W; Liao J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112382. PubMed ID: 34579901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds.
    Liu X; Rahaman MN; Liu Y; Bal BS; Bonewald LF
    Acta Biomater; 2013 Jul; 9(7):7506-17. PubMed ID: 23567939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Porosity and Pore-Size Distribution in Ti
    Kapat K; Srivas PK; Rameshbabu AP; Maity PP; Jana S; Dutta J; Majumdar P; Chakrabarti D; Dhara S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39235-39248. PubMed ID: 29058878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of porous carbonate apatite granules using microfiber and its histological evaluations in rabbit calvarial bone defects.
    Akita K; Fukuda N; Kamada K; Kudoh K; Kurio N; Tsuru K; Ishikawa K; Miyamoto Y
    J Biomed Mater Res A; 2020 Mar; 108(3):709-721. PubMed ID: 31756282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of porous titanium in prosthesis production using a moldless process: Evaluation of physical and mechanical properties with various particle sizes, shapes, and mixing ratios.
    Prananingrum W; Tomotake Y; Naito Y; Bae J; Sekine K; Hamada K; Ichikawa T
    J Mech Behav Biomed Mater; 2016 Aug; 61():581-589. PubMed ID: 27148637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants.
    Otsuki B; Takemoto M; Fujibayashi S; Neo M; Kokubo T; Nakamura T
    Biomaterials; 2006 Dec; 27(35):5892-900. PubMed ID: 16945409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of bone ingrowth into porous biomaterials using MICRO-CT.
    Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA
    Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.