These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26836267)

  • 1. Characteristics and Young's Modulus of Collagen Fibrils from Expanded Skin Using Anisotropic Controlled Rate Self-Inflating Tissue Expander.
    Manssor NA; Radzi Z; Yahya NA; Mohamad Yusof L; Hariri F; Khairuddin NH; Abu Kasim NH; Czernuszka JT
    Skin Pharmacol Physiol; 2016; 29(2):55-62. PubMed ID: 26836267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM analysis of collagen fibrils in expanded scalp tissue after anisotropic tissue expansion.
    Aziz J; Ahmad MF; Rahman MT; Yahya NA; Czernuszka J; Radzi Z
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1030-1038. PubMed ID: 28939521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril.
    Svensson RB; Hansen P; Hassenkam T; Haraldsson BT; Aagaard P; Kovanen V; Krogsgaard M; Kjaer M; Magnusson SP
    J Appl Physiol (1985); 2012 Feb; 112(3):419-26. PubMed ID: 22114175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Effects of Unidirectional Expansion Using Anisotropic Expanders in Horse Skin Tissue.
    Al-Majhali SH; Khairuddin NH; Abdul Razak IS; Radzi Z; Rahman MT; Sapalo JT; Mayaki AM; Czernuszka JT
    J Equine Vet Sci; 2021 Apr; 99():103399. PubMed ID: 33781409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanics of Type I Collagen.
    Varma S; Orgel JP; Schieber JD
    Biophys J; 2016 Jul; 111(1):50-6. PubMed ID: 27410733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization and viscoelastic constitutive modeling of skin.
    Sherman VR; Tang Y; Zhao S; Yang W; Meyers MA
    Acta Biomater; 2017 Apr; 53():460-469. PubMed ID: 28219806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Young's modulus of collagen at slow displacement rates.
    Lopez-Garcia MD; Beebe DJ; Crone WC
    Biomed Mater Eng; 2010; 20(6):361-9. PubMed ID: 21263182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Investigation of the Depth-Dependent Mechanical Anisotropy of the Human Corneal Stroma.
    Labate C; Lombardo M; De Santo MP; Dias J; Ziebarth NM; Lombardo G
    Invest Ophthalmol Vis Sci; 2015 Jun; 56(6):4053-60. PubMed ID: 26098472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for reducing peak pressure in laparoscopic grasping.
    Bos J; Doornebosch EW; Engbers JG; Nyhuis O; Dodou D
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1292-300. PubMed ID: 24043225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading.
    Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P
    J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of native and cross-linked type I collagen fibrils.
    Yang L; van der Werf KO; Fitié CF; Bennink ML; Dijkstra PJ; Feijen J
    Biophys J; 2008 Mar; 94(6):2204-11. PubMed ID: 18032556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructure and mechanics of mummified type I collagen from the 5300-year-old Tyrolean Iceman.
    Janko M; Zink A; Gigler AM; Heckl WM; Stark RW
    Proc Biol Sci; 2010 Aug; 277(1692):2301-9. PubMed ID: 20356896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the use of skin expanders.
    Pamplona DC; Weber HI; Leta FR
    Skin Res Technol; 2014 Nov; 20(4):463-72. PubMed ID: 24527999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale measurements of the assembly of collagen to fibrils.
    Yadavalli VK; Svintradze DV; Pidaparti RM
    Int J Biol Macromol; 2010 May; 46(4):458-64. PubMed ID: 20206203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Structural Features of a Spring-Based Model of Fibrous Collagen Tissue Govern the Overall Young's Modulus.
    Neubert N; Evans E; Dallon JC
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34382641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and histomorphological changes in expanded rabbit skin.
    Timmenga EJ; Schoorl R; Klopper PJ
    Br J Plast Surg; 1990 Jan; 43(1):101-6. PubMed ID: 2310891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steered molecular dynamics characterization of the elastic modulus and deformation mechanisms of single natural tropocollagen molecules.
    Tang M; Li T; Pickering E; Gandhi NS; Burrage K; Gu Y
    J Mech Behav Biomed Mater; 2018 Oct; 86():359-367. PubMed ID: 30015207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Observation of human corneal and scleral collagen fibrils by atomic force microscopy].
    Yamamoto S; Hitomi J; Sawaguchi S; Abe H; Shigeno M; Ushiki T
    Nippon Ganka Gakkai Zasshi; 1999 Nov; 103(11):800-5. PubMed ID: 10589238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.