These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26836350)

  • 1. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.
    Chin JP; McGrath JW; Quinn JP
    Curr Opin Chem Biol; 2016 Apr; 31():50-7. PubMed ID: 26836350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global and seasonal variation of marine phosphonate metabolism.
    Lockwood S; Greening C; Baltar F; Morales SE
    ISME J; 2022 Sep; 16(9):2198-2212. PubMed ID: 35739297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems.
    Frouin E; Lecoeuvre A; Armougom F; Schrenk MO; Erauso G
    mSystems; 2022 Aug; 7(4):e0032822. PubMed ID: 35913189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate production by marine microbes: Exploring new sources and potential function.
    Acker M; Hogle SL; Berube PM; Hackl T; Coe A; Stepanauskas R; Chisholm SW; Repeta DJ
    Proc Natl Acad Sci U S A; 2022 Mar; 119(11):e2113386119. PubMed ID: 35254902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New ways to break an old bond: the bacterial carbon-phosphorus hydrolases and their role in biogeochemical phosphorus cycling.
    Quinn JP; Kulakova AN; Cooley NA; McGrath JW
    Environ Microbiol; 2007 Oct; 9(10):2392-400. PubMed ID: 17803765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules.
    McGrath JW; Chin JP; Quinn JP
    Nat Rev Microbiol; 2013 Jun; 11(6):412-9. PubMed ID: 23624813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate insensitive aminophosphonate mineralisation within oceanic nutrient cycles.
    Chin JP; Quinn JP; McGrath JW
    ISME J; 2018 Apr; 12(4):973-980. PubMed ID: 29339823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional importance of bacterial oxidative phosphonate pathways.
    Pallitsch K; Zechel DL
    Biochem Soc Trans; 2023 Apr; 51(2):487-499. PubMed ID: 36892197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity and abundance of phosphonate biosynthetic genes in nature.
    Yu X; Doroghazi JR; Janga SC; Zhang JK; Circello B; Griffin BM; Labeda DP; Metcalf WW
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20759-64. PubMed ID: 24297932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus.
    Lenartowicz P; Kafarski P; Lipok J
    Biodegradation; 2015 Feb; 26(1):65-76. PubMed ID: 25385070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial metabolism of reduced phosphorus compounds.
    White AK; Metcalf WW
    Annu Rev Microbiol; 2007; 61():379-400. PubMed ID: 18035609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox chemistry in the phosphorus biogeochemical cycle.
    Pasek MA; Sampson JM; Atlas Z
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15468-73. PubMed ID: 25313061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment.
    Villarreal-Chiu JF; Quinn JP; McGrath JW
    Front Microbiol; 2012; 3():19. PubMed ID: 22303297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inventory of early branch points in microbial phosphonate biosynthesis.
    Li S; Horsman GP
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35188456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.
    Sobkowski M; Kraszewski A; Stawinski J
    Top Curr Chem; 2015; 361():137-77. PubMed ID: 25370520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.