These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 26836440)
21. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Wang L; Zhang Z; Liu Y; Wang B; Fang L; Qiu J; Zhang K; Wang S Nat Commun; 2018 Sep; 9(1):3817. PubMed ID: 30232323 [TBL] [Abstract][Full Text] [Related]
22. Tunable Thermoelectric Performance of the Nanocomposites Formed by Diketopyrrolopyrrole/Isoindigo-Based Donor-Acceptor Random Conjugated Copolymers and Carbon Nanotubes. Wang KC; Lin PS; Lin YC; Tung SH; Chen WC; Liu CL ACS Appl Mater Interfaces; 2023 Dec; 15(48):56116-56126. PubMed ID: 38010815 [TBL] [Abstract][Full Text] [Related]
23. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Sun Y; Sheng P; Di C; Jiao F; Xu W; Qiu D; Zhu D Adv Mater; 2012 Feb; 24(7):932-7. PubMed ID: 22250047 [TBL] [Abstract][Full Text] [Related]
25. Scalable-produced 3D elastic thermoelectric network for body heat harvesting. Liu Y; Wang X; Hou S; Wu Z; Wang J; Mao J; Zhang Q; Liu Z; Cao F Nat Commun; 2023 May; 14(1):3058. PubMed ID: 37244924 [TBL] [Abstract][Full Text] [Related]
26. Processability of Thermoelectric Ultrafine Fibers via Electrospinning for Wearable Electronics. Ewaldz E; Rinehart JM; Miller M; Brettmann B ACS Omega; 2023 Aug; 8(33):30239-30246. PubMed ID: 37636918 [TBL] [Abstract][Full Text] [Related]
27. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. Bubnova O; Berggren M; Crispin X J Am Chem Soc; 2012 Oct; 134(40):16456-9. PubMed ID: 23016795 [TBL] [Abstract][Full Text] [Related]
28. Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials. Zhang Y; Heo YJ; Park M; Park SJ Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960150 [TBL] [Abstract][Full Text] [Related]
29. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Yang C; Souchay D; Kneiß M; Bogner M; Wei HM; Lorenz M; Oeckler O; Benstetter G; Fu YQ; Grundmann M Nat Commun; 2017 Jul; 8():16076. PubMed ID: 28681842 [TBL] [Abstract][Full Text] [Related]
30. Efficient Debundling of Few-Walled Carbon Nanotubes by Wrapping with Donor-Acceptor Polymers for Improving Thermoelectric Properties. Jung J; Suh EH; Jeong YJ; Yang HS; Lee T; Jang J ACS Appl Mater Interfaces; 2019 Dec; 11(50):47330-47339. PubMed ID: 31741375 [TBL] [Abstract][Full Text] [Related]
31. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Sharma S; Sudhakara P; Omran AAB; Singh J; Ilyas RA Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502938 [TBL] [Abstract][Full Text] [Related]
33. Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Lei T; Pochorovski I; Bao Z Acc Chem Res; 2017 Apr; 50(4):1096-1104. PubMed ID: 28358486 [TBL] [Abstract][Full Text] [Related]
34. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications. Ou C; Sangle AL; Datta A; Jing Q; Busolo T; Chalklen T; Narayan V; Kar-Narayan S ACS Appl Mater Interfaces; 2018 Jun; 10(23):19580-19587. PubMed ID: 29775276 [TBL] [Abstract][Full Text] [Related]
35. Novel hybrid organic thermoelectric materials:three-component hybrid films consisting of a nanoparticle polymer complex, carbon nanotubes, and vinyl polymer. Toshima N; Oshima K; Anno H; Nishinaka T; Ichikawa S; Iwata A; Shiraishi Y Adv Mater; 2015 Apr; 27(13):2246-51. PubMed ID: 25689137 [TBL] [Abstract][Full Text] [Related]
36. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites. Zadan M; Malakooti MH; Majidi C ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638 [TBL] [Abstract][Full Text] [Related]
37. Apparatus for the measurement of electrical resistivity, Seebeck coefficient, and thermal conductivity of thermoelectric materials between 300 K and 12 K. Martin J; Nolas GS Rev Sci Instrum; 2016 Jan; 87(1):015105. PubMed ID: 26827351 [TBL] [Abstract][Full Text] [Related]
38. Side-Chain Effects on the Thermoelectric Properties of Fluorene-Based Copolymers. Liang A; Zhou X; Zhou W; Wan T; Wang L; Pan C; Wang L Macromol Rapid Commun; 2017 Sep; 38(18):. PubMed ID: 28544254 [TBL] [Abstract][Full Text] [Related]
39. Enhancing the Conductivity and Thermoelectric Performance of Semicrystalline Conducting Polymers through Controlled Tie Chain Incorporation. Zhu W; Qiu X; Laulainen JEM; Un HL; Ren X; Xiao M; Freychet G; Vacek P; Tjhe D; He Q; Wood W; Wang Z; Zhang Y; Qu Z; Asatryan J; Martin J; Heeney M; McNeill CR; Midgley PA; Jacobs IE; Sirringhaus H Adv Mater; 2024 Jul; 36(28):e2310480. PubMed ID: 38669281 [TBL] [Abstract][Full Text] [Related]
40. Development of High Performance Thermoelectric Polymers via Doping or Dedoping Engineering. Xu Y; Yan J; Zhou W; Ouyang J Chem Asian J; 2024 Aug; 19(15):e202400329. PubMed ID: 38736306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]