BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26836568)

  • 1. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display.
    Hu X; Hua H
    Appl Opt; 2015 Nov; 54(33):9990-9. PubMed ID: 26836568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics.
    Hu X; Hua H
    Opt Express; 2014 Jun; 22(11):13896-903. PubMed ID: 24921581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D integral imaging optical see-through head-mounted display.
    Hua H; Javidi B
    Opt Express; 2014 Jun; 22(11):13484-91. PubMed ID: 24921542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses.
    Wilson A; Hua H
    Opt Express; 2019 May; 27(11):15627-15637. PubMed ID: 31163757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements.
    Wang Q; Cheng D; Wang Y; Hua H; Jin G
    Appl Opt; 2013 Mar; 52(7):C88-99. PubMed ID: 23458822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel prototype for an optical see-through head-mounted display with addressable focus cues.
    Liu S; Hua H; Cheng D
    IEEE Trans Vis Comput Graph; 2010; 16(3):381-93. PubMed ID: 20224134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact design for optical-see-through holographic displays employing holographic optical elements.
    Zhou P; Li Y; Liu S; Su Y
    Opt Express; 2018 Sep; 26(18):22866-22876. PubMed ID: 30184944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films.
    Chen Q; Peng Z; Li Y; Liu S; Zhou P; Gu J; Lu J; Yao L; Wang M; Su Y
    Opt Express; 2019 Apr; 27(9):12039-12047. PubMed ID: 31052749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holographic display for see-through augmented reality using mirror-lens holographic optical element.
    Li G; Lee D; Jeong Y; Cho J; Lee B
    Opt Lett; 2016 Jun; 41(11):2486-9. PubMed ID: 27244395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integral floating display systems for augmented reality.
    Hong J; Min SW; Lee B
    Appl Opt; 2012 Jun; 51(18):4201-9. PubMed ID: 22722298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varifocal Occlusion-Capable Optical See-through Augmented Reality Display based on Focus-tunable Optics.
    Rathinavel K; Wetzstein G; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3125-3134. PubMed ID: 31502977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse-mode PSLC multi-plane optical see-through display for AR applications.
    Liu S; Li Y; Zhou P; Chen Q; Su Y
    Opt Express; 2018 Feb; 26(3):3394-3403. PubMed ID: 29401867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a Switchable AR/VR Near-eye Display with Accommodation-Vergence and Eyeglass Prescription Support.
    Xia X; Guan Y; State A; Chakravarthula P; Rathinavel K; Cham TJ; Fuchs H
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3114-3124. PubMed ID: 31403422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite-depth and vari-focal head-mounted displays based on geometrical lightguides.
    Xu M; Hua H
    Opt Express; 2020 Apr; 28(8):12121-12137. PubMed ID: 32403712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metalens Eyepiece for 3D Holographic Near-Eye Display.
    Wang C; Yu Z; Zhang Q; Sun Y; Tao C; Wu F; Zheng Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and prototype of an augmented reality display with per-pixel mutual occlusion capability.
    Wilson A; Hua H
    Opt Express; 2017 Nov; 25(24):30539-30549. PubMed ID: 29221081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of an optical see-through light-field near-eye display using a discrete lenslet array.
    Yao C; Cheng D; Yang T; Wang Y
    Opt Express; 2018 Jul; 26(14):18292-18301. PubMed ID: 30114010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.
    Chen X; Xu L; Wang Y; Wang H; Wang F; Zeng X; Wang Q; Egger J
    J Biomed Inform; 2015 Jun; 55():124-31. PubMed ID: 25882923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.