These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26836670)

  • 1. Unicursal random maze tool path for computer-controlled optical surfacing.
    Wang C; Wang Z; Xu Q
    Appl Opt; 2015 Dec; 54(34):10128-36. PubMed ID: 26836670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage.
    Zhao Q; Zhang L; Fan C
    Appl Opt; 2019 Nov; 58(31):8529-8541. PubMed ID: 31873338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restraint of path effect on optical surface in magnetorheological jet polishing.
    Wang T; Cheng H; Zhang W; Yang H; Wu W
    Appl Opt; 2016 Feb; 55(4):935-42. PubMed ID: 26836103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peano-like paths for subaperture polishing of optical aspherical surfaces.
    Tam HY; Cheng H; Dong Z
    Appl Opt; 2013 May; 52(15):3624-36. PubMed ID: 23736249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface ripple suppression in subaperture polishing with fragment-type tool paths.
    Dong Z; Nai W
    Appl Opt; 2018 Jul; 57(19):5523-5532. PubMed ID: 30117848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.
    Dunn CR; Walker DD
    Opt Express; 2008 Nov; 16(23):18942-9. PubMed ID: 19581985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of mid-spatial frequency errors on aspheric and freeform optics by circular-random path polishing.
    Beaucamp A; Takizawa K; Han Y; Zhu W
    Opt Express; 2021 Sep; 29(19):29802-29812. PubMed ID: 34614718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-efficiency smooth pseudo-random path planning for restraining the path ripple of robotic polishing.
    Li H; Li X; Wan S; Wei C; Shao J
    Appl Opt; 2021 Sep; 60(25):7732-7739. PubMed ID: 34613244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.
    Takizawa K; Beaucamp A
    Opt Express; 2017 Sep; 25(19):22411-22424. PubMed ID: 29041552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distance-based generation of a unicursal random path on a non-grid point set for optical polishing.
    Feng Y; Cheng H; Zhang S
    Appl Opt; 2023 Sep; 62(27):7288-7298. PubMed ID: 37855586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical and experimental comparisons of the smoothing effects for different multi-layer polishing tools during computer-controlled optical surfacing.
    Li X; Wei C; Zhang S; Xu W; Shao J
    Appl Opt; 2019 Jun; 58(16):4406-4413. PubMed ID: 31251250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces.
    He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions.
    Kim DW; Kim SW; Burge JH
    Opt Express; 2009 Nov; 17(24):21850-66. PubMed ID: 19997430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors.
    Dong Z; Cheng H; Tam HY
    Appl Opt; 2014 Jan; 53(3):327-34. PubMed ID: 24514115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo-random Path Generation Algorithms and Strategies for the Surface Quality Improvement of Optical Aspherical Components.
    Zha J; Zhang H; Li Y; Chen Y
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse bi-step raster path for suppressing the mid-spatial-frequency error by fluid jet polishing.
    Wan K; Wan S; Jiang C; Wei C; Shao J
    Opt Express; 2022 Feb; 30(5):6603-6616. PubMed ID: 35299441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-spatial frequency removal on aluminum free-form mirror.
    Li H; Walker DD; Zheng X; Su X; Wu L; Reynolds C; Yu G; Li T; Zhang P
    Opt Express; 2019 Sep; 27(18):24885-24899. PubMed ID: 31510370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.
    Wan S; Zhang X; He X; Xu M
    Appl Opt; 2016 Dec; 55(36):10223-10228. PubMed ID: 28059243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.
    Hoyo JD; Choi H; Burge JH; Kim GH; Kim DW
    Appl Opt; 2017 Jun; 56(18):5258-5267. PubMed ID: 29047579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restraint of the mid-spatial frequency error on optical surfaces by multi-jet polishing.
    Zhang Z; Cheung CF; Wang C; Ho LT; Guo J
    Opt Express; 2022 Dec; 30(26):46307-46323. PubMed ID: 36558588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.