BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26836779)

  • 1. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    Sports Biomech; 2016; 15(1):11-22. PubMed ID: 26836779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    J Neuroeng Rehabil; 2014 Dec; 11():162. PubMed ID: 25495782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running.
    Watari R; Hettinga B; Osis S; Ferber R
    J Appl Biomech; 2016 Jun; 32(3):306-10. PubMed ID: 26695636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.
    Schütte KH; Maas EA; Exadaktylos V; Berckmans D; Venter RE; Vanwanseele B
    PLoS One; 2015; 10(10):e0141957. PubMed ID: 26517261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.
    Schütte KH; Aeles J; De Beéck TO; van der Zwaard BC; Venter R; Vanwanseele B
    Gait Posture; 2016 Jul; 48():220-225. PubMed ID: 27318455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.
    Wundersitz DW; Gastin PB; Richter C; Robertson SJ; Netto KJ
    Eur J Sport Sci; 2015; 15(5):382-90. PubMed ID: 25196466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test-Retest Reliability of an Automated Infrared-Assisted Trunk Accelerometer-Based Gait Analysis System.
    Hsu CY; Tsai YS; Yau CS; Shie HH; Wu CM
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27455281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caution using data from triaxial accelerometers housed in player tracking units during running.
    Edwards S; White S; Humphreys S; Robergs R; O'Dwyer N
    J Sports Sci; 2019 Apr; 37(7):810-818. PubMed ID: 30306824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliability and validity of a wireless accelerometer for the assessment of postural sway.
    Saunders NW; Koutakis P; Kloos AD; Kegelmeyer DA; Dicke JD; Devor ST
    J Appl Biomech; 2015 Jun; 31(3):159-63. PubMed ID: 25558822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The value of tibial mounted inertial measurement units to quantify running kinetics in elite football (soccer) players. A reliability and agreement study using a research orientated and a clinically orientated system.
    Hughes T; Jones RK; Starbuck C; Sergeant JC; Callaghan MJ
    J Electromyogr Kinesiol; 2019 Feb; 44():156-164. PubMed ID: 30658231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements.
    Nedergaard NJ; Robinson MA; Eusterwiemann E; Drust B; Lisboa PJ; Vanrenterghem J
    Int J Sports Physiol Perform; 2017 Jan; 12(1):18-26. PubMed ID: 27002795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak impact accelerations during track and treadmill running.
    Bigelow EM; Elvin NG; Elvin AA; Arnoczky SP
    J Appl Biomech; 2013 Oct; 29(5):639-44. PubMed ID: 23182887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.
    Raper DP; Witchalls J; Philips EJ; Knight E; Drew MK; Waddington G
    J Sci Med Sport; 2018 Jan; 21(1):84-88. PubMed ID: 28663135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy cost of running instability evaluated with wearable trunk accelerometry.
    Schütte KH; Sackey S; Venter R; Vanwanseele B
    J Appl Physiol (1985); 2018 Feb; 124(2):462-472. PubMed ID: 28751372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration patterns in the lower and upper trunk during running.
    Kawabata M; Goto K; Fukusaki C; Sasaki K; Hihara E; Mizushina T; Ishii N
    J Sports Sci; 2013; 31(16):1841-53. PubMed ID: 23879798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.
    Sabatini AM; Ligorio G; Mannini A
    Biomed Eng Online; 2015 Nov; 14():106. PubMed ID: 26597696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a pouch-mounted activPAL3 accelerometer.
    Stanton R; Guertler D; Duncan MJ; Vandelanotte C
    Gait Posture; 2014 Sep; 40(4):688-93. PubMed ID: 25161009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of walking, running, and jumping movement features by using the inertial measurement unit.
    Lee YS; Ho CS; Shih Y; Chang SY; Róbert FJ; Shiang TY
    Gait Posture; 2015 May; 41(4):877-81. PubMed ID: 25819717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Vertical Stiffness in Sport With Accelerometers: Exercise Caution!
    Eggers TM; Massard TI; Clothier PJ; Lovell R
    J Strength Cond Res; 2018 Jul; 32(7):1919-1922. PubMed ID: 29120988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.