BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26836854)

  • 1. Adjustable hollow-cone output x-ray beam from an ellipsoidal monocapillary with a pinhole and a beam stop.
    Sun XP; Liu ZG; Yi LT; Sun WY; Li FZ; Jiang BW; Ma YZ; Sun TX
    Appl Opt; 2015 Dec; 54(35):10326-32. PubMed ID: 26836854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics.
    Li F; Liu Z; Sun T
    Rev Sci Instrum; 2016 Sep; 87(9):093106. PubMed ID: 27782614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-quality quasi-parallel X-ray beam obtained by a parabolic monocapillary X-ray lens with a square beam stop.
    Zhou P; Cui J; Du Z; Zhang T; Liu Z
    J Xray Sci Technol; 2022; 30(2):261-273. PubMed ID: 34957946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.
    Drakopoulos M; Connolley T; Reinhard C; Atwood R; Magdysyuk O; Vo N; Hart M; Connor L; Humphreys B; Howell G; Davies S; Hill T; Wilkin G; Pedersen U; Foster A; De Maio N; Basham M; Yuan F; Wanelik K
    J Synchrotron Radiat; 2015 May; 22(3):828-38. PubMed ID: 25931103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase-preserving beam expander for biomedical X-ray imaging.
    Martinson M; Samadi N; Bassey B; Gomez A; Chapman D
    J Synchrotron Radiat; 2015 May; 22(3):801-6. PubMed ID: 25931100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the Advanced Photon Source.
    Fischetti R; Stepanov S; Rosenbaum G; Barrea R; Black E; Gore D; Heurich R; Kondrashkina E; Kropf AJ; Wang S; Zhang K; Irving TC; Bunker GB
    J Synchrotron Radiat; 2004 Sep; 11(Pt 5):399-405. PubMed ID: 15310956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.
    Zhu Y; Wang Y; Sun T; Sun X; Zhang X; Liu Z; Li Y; Zhang F
    Appl Radiat Isot; 2018 Jul; 137():172-176. PubMed ID: 29653299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monochromatic X-ray imaging using a combination of doubly curved crystal and polycapillary X-ray lens.
    Sun T; MacDonald CA
    J Xray Sci Technol; 2015; 23(2):141-6. PubMed ID: 25882727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits.
    Huang R; Bilderback DH
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):74-84. PubMed ID: 16371711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laboratory based system for laue micro x-ray diffraction.
    Lynch PA; Stevenson AW; Liang D; Parry D; Wilkins S; Tamura N
    Rev Sci Instrum; 2007 Feb; 78(2):023904. PubMed ID: 17578120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinhole interferometry with coherent hard X-rays.
    Leitenberger W; Wendrock H; Bischoff L; Weitkamp T
    J Synchrotron Radiat; 2004 Mar; 11(Pt 2):190-7. PubMed ID: 14960785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact soft x-ray transmission microscopy with sub-50 nm spatial resolution.
    Kim KW; Kwon Y; Nam KY; Lim JH; Kim KG; Chon KS; Kim BH; Kim DE; Kim J; Ahn BN; Shin HJ; Rah S; Kim KH; Chae JS; Gweon DG; Kang DW; Kang SH; Min JY; Choi KS; Yoon SE; Kim EA; Namba Y; Yoon KH
    Phys Med Biol; 2006 Mar; 51(6):N99-107. PubMed ID: 16510949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube.
    Kayser Y; Błachucki W; Dousse JC; Hoszowska J; Neff M; Romano V
    Rev Sci Instrum; 2014 Apr; 85(4):043101. PubMed ID: 24784587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using an in-vacuum CCD detector for simultaneous small- and wide-angle scattering at beamline X9.
    Yang L
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):211-8. PubMed ID: 23412476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of capillary optics as a beam intensifier for a Compton x-ray source.
    Tompkins PA; Abreu CC; Carroll FE; Xiao QF; MacDonald CA
    Med Phys; 1994 Nov; 21(11):1777-84. PubMed ID: 7891640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wide-aperture dynamically focusing sagittal monochromator for X-ray spectroscopy and diffraction.
    Bilsborrow RL; Atkinson PA; Bliss N; Dent AJ; Dobson BR; Stephenson PC
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):54-8. PubMed ID: 16371708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Crystal Diffraction Patterns Using a Capillary-Focused Synchrotron X-ray Beam.
    Balaic DX; Barnea Z; Nugent KA; Garrett RF; Varghese JN; Wilkins SW
    J Synchrotron Radiat; 1996 Nov; 3(Pt 6):289-95. PubMed ID: 16702694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Standards for measuring spatial resolution in biological X-ray microanalysis.
    Sumner AT
    Scan Electron Microsc; 1983; (Pt 2):785-92. PubMed ID: 6635575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences.
    Marcus MA; MacDowell AA; Celestre R; Manceau A; Miller T; Padmore HA; Sublett RE
    J Synchrotron Radiat; 2004 May; 11(Pt 3):239-47. PubMed ID: 15103110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-high resolution zone-doubled diffractive X-ray optics for the multi-keV regime.
    Vila-Comamala J; Gorelick S; Färm E; Kewish CM; Diaz A; Barrett R; Guzenko VA; Ritala M; David C
    Opt Express; 2011 Jan; 19(1):175-84. PubMed ID: 21263555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.