These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
441 related articles for article (PubMed ID: 26836890)
1. Contribution of the Mitochondria to Locomotor Muscle Dysfunction in Patients With COPD. Taivassalo T; Hussain SN Chest; 2016 May; 149(5):1302-12. PubMed ID: 26836890 [TBL] [Abstract][Full Text] [Related]
3. Failed upregulation of TFAM protein and mitochondrial DNA in oxidatively deficient fibers of chronic obstructive pulmonary disease locomotor muscle. Konokhova Y; Spendiff S; Jagoe RT; Aare S; Kapchinsky S; MacMillan NJ; Rozakis P; Picard M; Aubertin-Leheudre M; Pion CH; Bourbeau J; Hepple RT; Taivassalo T Skelet Muscle; 2016; 6():10. PubMed ID: 26893822 [TBL] [Abstract][Full Text] [Related]
4. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. Theilen NT; Kunkel GH; Tyagi SC J Cell Physiol; 2017 Sep; 232(9):2348-2358. PubMed ID: 27966783 [TBL] [Abstract][Full Text] [Related]
5. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Puente-Maestu L; Tejedor A; Lázaro A; de Miguel J; Alvarez-Sala L; González-Aragoneses F; Simón C; Agustí A Am J Respir Cell Mol Biol; 2012 Sep; 47(3):358-62. PubMed ID: 22493009 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats. Kim JC; Park GD; Kim SH J Nutr Sci Vitaminol (Tokyo); 2017; 63(5):277-283. PubMed ID: 29225311 [TBL] [Abstract][Full Text] [Related]
7. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Meyer A; Zoll J; Charles AL; Charloux A; de Blay F; Diemunsch P; Sibilia J; Piquard F; Geny B Exp Physiol; 2013 Jun; 98(6):1063-78. PubMed ID: 23377494 [TBL] [Abstract][Full Text] [Related]
8. Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved. Zhang M; Tang J; Li Y; Xie Y; Shan H; Chen M; Zhang J; Yang X; Zhang Q; Yang X Chem Biol Interact; 2017 Nov; 277():168-175. PubMed ID: 28951138 [TBL] [Abstract][Full Text] [Related]
9. PGC-1α regulates mitochondrial properties beyond biogenesis with aging and exercise training. Halling JF; Jessen H; Nøhr-Meldgaard J; Buch BT; Christensen NM; Gudiksen A; Ringholm S; Neufer PD; Prats C; Pilegaard H Am J Physiol Endocrinol Metab; 2019 Sep; 317(3):E513-E525. PubMed ID: 31265325 [TBL] [Abstract][Full Text] [Related]
10. Impaired exercise tolerance, mitochondrial biogenesis, and muscle fiber maintenance in miR-133a-deficient mice. Nie Y; Sato Y; Wang C; Yue F; Kuang S; Gavin TP FASEB J; 2016 Nov; 30(11):3745-3758. PubMed ID: 27458245 [TBL] [Abstract][Full Text] [Related]
11. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044 [TBL] [Abstract][Full Text] [Related]
12. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice. Kim Y; Kim D; Park Y J Nutr Biochem; 2016 Dec; 38():125-133. PubMed ID: 27736732 [TBL] [Abstract][Full Text] [Related]
13. The role of mitochondria in redox signaling of muscle homeostasis. Ji LL; Yeo D; Kang C; Zhang T J Sport Health Sci; 2020 Sep; 9(5):386-393. PubMed ID: 32780692 [TBL] [Abstract][Full Text] [Related]
14. Oleuropein induces mitochondrial biogenesis and decreases reactive oxygen species generation in cultured avian muscle cells, possibly via an up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α. Kikusato M; Muroi H; Uwabe Y; Furukawa K; Toyomizu M Anim Sci J; 2016 Nov; 87(11):1371-1378. PubMed ID: 26916829 [TBL] [Abstract][Full Text] [Related]
15. Muscle immobilization and remobilization downregulates PGC-1α signaling and the mitochondrial biogenesis pathway. Kang C; Ji LL J Appl Physiol (1985); 2013 Dec; 115(11):1618-25. PubMed ID: 23970536 [TBL] [Abstract][Full Text] [Related]
16. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats. Zhang HH; Liu J; Qin GJ; Li XL; Du PJ; Hao X; Zhao D; Tian T; Wu J; Yun M; Bai YH J Cell Biochem; 2017 Nov; 118(11):4072-4079. PubMed ID: 28409883 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Xu Y; Zhao C; Sun X; Liu Z; Zhang J Biochem Biophys Res Commun; 2015 Nov; 467(1):103-8. PubMed ID: 26408907 [TBL] [Abstract][Full Text] [Related]
18. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Remels AH; Schrauwen P; Broekhuizen R; Willems J; Kersten S; Gosker HR; Schols AM Eur Respir J; 2007 Aug; 30(2):245-52. PubMed ID: 17459894 [TBL] [Abstract][Full Text] [Related]
19. Loss of quadriceps muscle oxidative phenotype and decreased endurance in patients with mild-to-moderate COPD. van den Borst B; Slot IG; Hellwig VA; Vosse BA; Kelders MC; Barreiro E; Schols AM; Gosker HR J Appl Physiol (1985); 2013 May; 114(9):1319-28. PubMed ID: 22815389 [TBL] [Abstract][Full Text] [Related]
20. TIGAR regulates mitochondrial functions through SIRT1-PGC1α pathway and translocation of TIGAR into mitochondria in skeletal muscle. Geng J; Wei M; Yuan X; Liu Z; Wang X; Zhang D; Luo L; Wu J; Guo W; Qin ZH FASEB J; 2019 May; 33(5):6082-6098. PubMed ID: 30726106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]