These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26837038)
1. Electrically actuated phase-change pixels for transmissive and reflective spatial light modulators in the near and mid infrared. Hendrickson J; Liang H; Soref R; Mu J Appl Opt; 2015 Dec; 54(36):10698-704. PubMed ID: 26837038 [TBL] [Abstract][Full Text] [Related]
2. Electro-optical 1 x 2, 1 x N and N x N fiber-optic and free-space switching over 1.55 to 3.0 μm using a Ge-Ge(2)Sb(2)Te(5)-Ge prism structure. Hendrickson J; Soref R; Sweet J; Majumdar A Opt Express; 2015 Jan; 23(1):72-85. PubMed ID: 25835655 [TBL] [Abstract][Full Text] [Related]
3. Nonvolatile Phase-Only Transmissive Spatial Light Modulator with Electrical Addressability of Individual Pixels. Fang Z; Chen R; Fröch JE; Tanguy QAA; Khan AI; Wu X; Tara V; Manna A; Sharp D; Munley C; Miller F; Zhao Y; Geiger S; Böhringer KF; Reynolds MS; Pop E; Majumdar A ACS Nano; 2024 Apr; 18(17):11245-11256. PubMed ID: 38639708 [TBL] [Abstract][Full Text] [Related]
4. General treatment of spatial light modulator dead-zone effects on optical correlation. II. Mathematical analysis. Gianino PD; Woods CL Appl Opt; 1993 Nov; 32(32):6536-41. PubMed ID: 20856495 [TBL] [Abstract][Full Text] [Related]
5. Polarization-Insensitive Surface Plasmon Polarization Electro-Absorption Modulator Based on Epsilon-Near-Zero Indium Tin Oxide. Jin L; Wen L; Liang L; Chen Q; Sun Y Nanoscale Res Lett; 2018 Feb; 13(1):39. PubMed ID: 29396620 [TBL] [Abstract][Full Text] [Related]
6. Mid-infrared non-volatile silicon photonic switches using nanoscale Ge Ali N; Kumar R Nanotechnology; 2020 Mar; 31(11):115207. PubMed ID: 31751966 [TBL] [Abstract][Full Text] [Related]
7. Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO₂/ITO/Cu stack for CMOS backend integration. Zhu S; Lo GQ; Kwong DL Opt Express; 2014 Jul; 22(15):17930-47. PubMed ID: 25089413 [TBL] [Abstract][Full Text] [Related]
8. Electro-optical modulation of a silicon waveguide with an "epsilon-near-zero" material. Vasudev AP; Kang JH; Park J; Liu X; Brongersma ML Opt Express; 2013 Nov; 21(22):26387-97. PubMed ID: 24216861 [TBL] [Abstract][Full Text] [Related]
12. Mid-infrared hybrid Si/VO Sadeghi M; Janjan B; Heidari M; Abbott D Opt Express; 2020 Mar; 28(7):9198-9207. PubMed ID: 32225531 [TBL] [Abstract][Full Text] [Related]
13. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material. Lee SY; Kim YH; Cho SM; Kim GH; Kim TY; Ryu H; Kim HN; Kang HB; Hwang CY; Hwang CS Sci Rep; 2017 Jan; 7():41152. PubMed ID: 28117346 [TBL] [Abstract][Full Text] [Related]
14. Electro-optical switching at 1550 nm using a two-state GeSe phase-change layer. Soref R; Hendrickson J; Liang H; Majumdar A; Mu J; Li X; Huang WP Opt Express; 2015 Jan; 23(2):1536-46. PubMed ID: 25835911 [TBL] [Abstract][Full Text] [Related]
15. Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Sung Y; Malay RE; Wen X; Bezama CN; Soman VV; Huang MH; Garner SM; Poliks MD; Klotzkin D Appl Opt; 2018 Mar; 57(9):2202-2207. PubMed ID: 29604013 [TBL] [Abstract][Full Text] [Related]
16. A spatial light modulator that uses scattering in a cholesteric liquid crystal. Saito M; Uemi H Rev Sci Instrum; 2016 Mar; 87(3):033102. PubMed ID: 27036753 [TBL] [Abstract][Full Text] [Related]
18. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator. Babicheva VE; Zhukovsky SV; Lavrinenko AV Opt Express; 2014 Nov; 22(23):28890-7. PubMed ID: 25402128 [TBL] [Abstract][Full Text] [Related]
19. Design of low loss 1 × 1 and 1 × 2 phase-change optical switches with different crystalline phases of Ge Li Y; Liu FR; Han G; Chen QY; Zhao ZP; Xie XX; Huang Y; Yuan YP Nanotechnology; 2020 Nov; 31(45):455206. PubMed ID: 32707570 [TBL] [Abstract][Full Text] [Related]
20. General treatment of spatial light modulator dead-zone effects on optical correlation. I. Computer simulations. Gianino PD; Woods CL Appl Opt; 1993 Nov; 32(32):6527-35. PubMed ID: 20856494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]