These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26837532)

  • 41. Recirculation of nanoliter volumes within microfluidic channels.
    Lammertink RG; Schlautmann S; Besselink GA; Schasfoort RB
    Anal Chem; 2004 Jun; 76(11):3018-22. PubMed ID: 15167777
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Centrifugal microfluidic platforms: advanced unit operations and applications.
    Strohmeier O; Keller M; Schwemmer F; Zehnle S; Mark D; von Stetten F; Zengerle R; Paust N
    Chem Soc Rev; 2015 Oct; 44(17):6187-229. PubMed ID: 26035697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Small-angle X-ray scattering in droplet-based microfluidics.
    Stehle R; Goerigk G; Wallacher D; Ballauff M; Seiffert S
    Lab Chip; 2013 Apr; 13(8):1529-37. PubMed ID: 23429654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative analysis in nanoliter wells by prefilling of wells using electrospray deposition followed by sample introduction with a coverslip method.
    Moerman R; Knoll J; Apetrei C; van den Doel LR; van Dedem GW
    Anal Chem; 2005 Jan; 77(1):225-31. PubMed ID: 15623300
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sensitive sequence-specific molecular identification system comprising an aluminum micro-nanofluidic chip and associated real-time confocal detector.
    Huang G; Wang C; Ma L; Yang X; Yang X; Wang G
    Anal Chim Acta; 2011 Jun; 695(1-2):1-10. PubMed ID: 21601025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM.
    Merkens S; De Salvo G; Kruse J; Modin E; Tollan C; Grzelczak M; Chuvilin A
    Ultramicroscopy; 2023 Mar; 245():113654. PubMed ID: 36470094
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development and validation of a microfluidic immunoassay capable of multiplexing parallel samples in microliter volumes.
    Ghodbane M; Stucky EC; Maguire TJ; Schloss RS; Shreiber DI; Zahn JD; Yarmush ML
    Lab Chip; 2015 Aug; 15(15):3211-21. PubMed ID: 26130452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanofractionation spotter technology for rapid contactless and high-resolution deposition of LC eluent for further off-line analysis.
    Kool J; de Kloe G; Denker AD; van Altena K; Smoluch M; van Iperen D; Nahar TT; Limburg RJ; Niessen WM; Lingeman H; Leurs R; de Esch IJ; Smit AB; Irth H
    Anal Chem; 2011 Jan; 83(1):125-32. PubMed ID: 21117623
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanoliter scale microbioreactor array for quantitative cell biology.
    Lee PJ; Hung PJ; Rao VM; Lee LP
    Biotechnol Bioeng; 2006 May; 94(1):5-14. PubMed ID: 16315325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Openly accessible microfluidic liquid handlers for automated high-throughput nanoliter cell culture.
    Zhou Y; Pang Y; Huang Y
    Anal Chem; 2012 Mar; 84(5):2576-84. PubMed ID: 22324855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery.
    Neeves KB; Lo CT; Foley CP; Saltzman WM; Olbricht WL
    J Control Release; 2006 Apr; 111(3):252-62. PubMed ID: 16476500
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A study of mixing in thermocapillary flows on micropatterned surfaces.
    Darhuber AA; Chen JZ; Davis JM; Troian SM
    Philos Trans A Math Phys Eng Sci; 2004 May; 362(1818):1037-58. PubMed ID: 15306483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device.
    Li C; Dong X; Qin J; Lin B
    Anal Chim Acta; 2009 Apr; 640(1-2):93-9. PubMed ID: 19362626
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quality control procedures for dose-response curve generation using nanoliter dispense technologies.
    Quintero C; Rosenstein C; Hughes B; Middleton R; Kariv I
    J Biomol Screen; 2007 Sep; 12(6):891-9. PubMed ID: 17517899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.
    Cai LF; Zhu Y; Du GS; Fang Q
    Anal Chem; 2012 Jan; 84(1):446-52. PubMed ID: 22128774
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adding precise nanoliter volume capabilities to liquid-handling automation for compound screening experimentation.
    Murthy TV; Kroncke D; Bonin PD
    J Lab Autom; 2011 Jun; 16(3):221-8. PubMed ID: 21609705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.