These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26837532)

  • 61. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays.
    Huebner A; Bratton D; Whyte G; Yang M; Demello AJ; Abell C; Hollfelder F
    Lab Chip; 2009 Mar; 9(5):692-8. PubMed ID: 19224019
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Multipurpose microfluidic probe.
    Juncker D; Schmid H; Delamarche E
    Nat Mater; 2005 Aug; 4(8):622-8. PubMed ID: 16041377
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microfluidic probes for use in life sciences and medicine.
    Qasaimeh MA; Ricoult SG; Juncker D
    Lab Chip; 2013 Jan; 13(1):40-50. PubMed ID: 23042577
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Paper Stacks for Uniform Rehydration of Dried Reagents in Paper Microfluidic Devices.
    Das D; Dsouza A; Kaur N; Soni S; Toley BJ
    Sci Rep; 2019 Oct; 9(1):15755. PubMed ID: 31673060
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.
    Lee ES; Robinson D; Rognlien JL; Harnett CK; Simmons BA; Bowe Ellis CR; Davalos RV
    Bioelectrochemistry; 2006 Sep; 69(1):117-25. PubMed ID: 16483852
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents.
    May AP; Segelke BW
    Methods Mol Biol; 2008; 426():387-402. PubMed ID: 18542878
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Centrifugo-pneumatic multi-liquid aliquoting - parallel aliquoting and combination of multiple liquids in centrifugal microfluidics.
    Schwemmer F; Hutzenlaub T; Buselmeier D; Paust N; von Stetten F; Mark D; Zengerle R; Kosse D
    Lab Chip; 2015 Aug; 15(15):3250-8. PubMed ID: 26138211
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Model fluids representing aqueous in-vitro diagnostic reagents for the development of dispensing systems.
    Losleben N; Spinke J; Adler S; Oranth N; Zengerle R
    Drug Discov Today; 2013 Nov; 18(21-22):1035-42. PubMed ID: 23827760
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells.
    Tavana H; Jovic A; Mosadegh B; Lee QY; Liu X; Luker KE; Luker GD; Weiss SJ; Takayama S
    Nat Mater; 2009 Sep; 8(9):736-41. PubMed ID: 19684584
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antibiograms in five pipetting steps: precise dilution assays in sub-microliter volumes with a conventional pipette.
    Derzsi L; Kaminski TS; Garstecki P
    Lab Chip; 2016 Mar; 16(5):893-901. PubMed ID: 26805579
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Concentration gradient immunoassay. 1. An immunoassay based on interdiffusion and surface binding in a microchannel.
    Nelson KE; Foley JO; Yager P
    Anal Chem; 2007 May; 79(10):3542-8. PubMed ID: 17437332
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Pixel-based open-space microfluidics for versatile surface processing.
    Goyette PA; Boulais É; Tremblay M; Gervais T
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33376203
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microstructure guided multi-scale liquid patterning on an open surface.
    Park D; Kang M; Choi JW; Paik SM; Ko J; Lee S; Lee Y; Son K; Ha J; Choi M; Park W; Kim HY; Jeon NL
    Lab Chip; 2018 Jul; 18(14):2013-2022. PubMed ID: 29873341
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nanoliter droplet viscometer with additive-free operation.
    Livak-Dahl E; Lee J; Burns MA
    Lab Chip; 2013 Jan; 13(2):297-301. PubMed ID: 23192296
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport.
    Orgovan N; Patko D; Hos C; Kurunczi S; Szabó B; Ramsden JJ; Horvath R
    Adv Colloid Interface Sci; 2014 Sep; 211():1-16. PubMed ID: 24846752
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biopatterning: The Art of Patterning Biomolecules on Surfaces.
    Delamarche E; Pereiro I; Kashyap A; Kaigala GV
    Langmuir; 2021 Aug; 37(32):9637-9651. PubMed ID: 34347483
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Viscometry of single nanoliter-volume droplets using dynamic force spectroscopy.
    Lee M; Kim B; Kim Q; Hwang J; An S; Jhe W
    Phys Chem Chem Phys; 2016 Oct; 18(39):27684-27690. PubMed ID: 27711598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.