BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 26837573)

  • 1. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus.
    Henson WR; Campbell T; DeLorenzo DM; Gao Y; Berla B; Kim SJ; Foston M; Moon TS; Dantas G
    Metab Eng; 2018 Sep; 49():69-83. PubMed ID: 30059786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 4. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630.
    Roell GW; Carr RR; Campbell T; Shang Z; Henson WR; Czajka JJ; Martín HG; Zhang F; Foston M; Dantas G; Moon TS; Tang YJ
    Metab Eng; 2019 Sep; 55():120-130. PubMed ID: 31271774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid metabolism of phenol-tolerant
    Henson WR; Hsu FF; Dantas G; Moon TS; Foston M
    Biotechnol Biofuels; 2018; 11():339. PubMed ID: 30607174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of
    Anthony WE; Carr RR; DeLorenzo DM; Campbell TP; Shang Z; Foston M; Moon TS; Dantas G
    Biotechnol Biofuels; 2019; 12():192. PubMed ID: 31404385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting fatty acid synthesis in Rhodococcus opacus PD630 by overexpression of autologous thioesterases.
    Huang L; Zhao L; Zan X; Song Y; Ratledge C
    Biotechnol Lett; 2016 Jun; 38(6):999-1008. PubMed ID: 26956236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Toolkit for Gene Expression Control and Genome Modification in Rhodococcus opacus PD630.
    DeLorenzo DM; Rottinghaus AG; Henson WR; Moon TS
    ACS Synth Biol; 2018 Feb; 7(2):727-738. PubMed ID: 29366319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.
    Xiong X; Wang X; Chen S
    J Ind Microbiol Biotechnol; 2016 Jul; 43(7):1017-25. PubMed ID: 27143134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
    Holder JW; Ulrich JC; DeBono AC; Godfrey PA; Desjardins CA; Zucker J; Zeng Q; Leach AL; Ghiviriga I; Dancel C; Abeel T; Gevers D; Kodira CD; Desany B; Affourtit JP; Birren BW; Sinskey AJ
    PLoS Genet; 2011 Sep; 7(9):e1002219. PubMed ID: 21931557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution.
    Peng F; Ye M; Liu Y; Liu J; Lan Y; Luo A; Zhang T; Jiang Z; Song H
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2751-2761. PubMed ID: 35278114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630.
    Chen Y; Ding Y; Yang L; Yu J; Liu G; Wang X; Zhang S; Yu D; Song L; Zhang H; Zhang C; Huo L; Huo C; Wang Y; Du Y; Zhang H; Zhang P; Na H; Xu S; Zhu Y; Xie Z; He T; Zhang Y; Wang G; Fan Z; Yang F; Liu H; Wang X; Zhang X; Zhang MQ; Li Y; Steinbüchel A; Fujimoto T; Cichello S; Yu J; Liu P
    Nucleic Acids Res; 2014 Jan; 42(2):1052-64. PubMed ID: 24150943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.
    Wang B; Rezenom YH; Cho KC; Tran JL; Lee DG; Russell DH; Gill JJ; Young R; Chu KH
    Bioresour Technol; 2014 Jun; 161():162-70. PubMed ID: 24698742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630.
    Hernández MA; Arabolaza A; Rodríguez E; Gramajo H; Alvarez HM
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2119-30. PubMed ID: 22926642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in
    DeLorenzo DM; Moon TS
    ACS Synth Biol; 2019 Aug; 8(8):1921-1930. PubMed ID: 31362487
    [No Abstract]   [Full Text] [Related]  

  • 20. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.