BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 26837657)

  • 1. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying.
    Yang Y; Kang X; Huang L; Pan D
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5308-13. PubMed ID: 26837657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Insight of Li-Doped Cu
    Yang Y; Huang L; Pan D
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23878-23883. PubMed ID: 28657705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substitution of Ag for Cu in Cu
    Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process.
    Liu F; Zeng F; Song N; Jiang L; Han Z; Su Z; Yan C; Wen X; Hao X; Liu Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14376-83. PubMed ID: 26080031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compositionally tunable Cu2ZnSn(S(1-x)Se(x))4 nanocrystals: probing the effect of Se-inclusion in mixed chalcogenide thin films.
    Riha SC; Parkinson BA; Prieto AL
    J Am Chem Soc; 2011 Oct; 133(39):15272-5. PubMed ID: 21882872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficiency solution-processed Cu2ZnSn(S,Se)4 thin-film solar cells prepared from binary and ternary nanoparticles.
    Cao Y; Denny MS; Caspar JV; Farneth WE; Guo Q; Ionkin AS; Johnson LK; Lu M; Malajovich I; Radu D; Rosenfeld HD; Choudhury KR; Wu W
    J Am Chem Soc; 2012 Sep; 134(38):15644-7. PubMed ID: 22963012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental Precursor Solution Processed (Cu
    Qi Y; Tian Q; Meng Y; Kou D; Zhou Z; Zhou W; Wu S
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21243-21250. PubMed ID: 28586190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-Separation-Induced Crystal Growth for Large-Grained Cu
    Huang L; Wei S; Pan D
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35069-35078. PubMed ID: 30247020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution.
    Enkhbat T; Kim S; Kim J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36735-36741. PubMed ID: 31532194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compositional and Interfacial Modification of Cu2 ZnSn(S,Se)4 Thin-Film Solar Cells Prepared by Electrochemical Deposition.
    Seo SW; Jeon JO; Seo JW; Yu YY; Jeong JH; Lee DK; Kim H; Ko MJ; Son HJ; Jang HW; Kim JY
    ChemSusChem; 2016 Mar; 9(5):439-44. PubMed ID: 26822494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alkali metals (Na, Li, Rb) on the performance of electrostatic spray-assisted vapor deposited Cu2ZnSn(S,Se)4 solar cells.
    Altamura G; Wang M; Choy KL
    Sci Rep; 2016 Feb; 6():22109. PubMed ID: 26916212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substitution of Li for Cu in Cu
    Lafond A; Guillot-Deudon C; Vidal J; Paris M; La C; Jobic S
    Inorg Chem; 2017 Mar; 56(5):2712-2721. PubMed ID: 28186742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd-Free Zn(O,S) as Alternative Buffer Layer for Chalcogenide and Kesterite Based Thin Films Solar Cells: A Review.
    Gour KS; Parmar R; Kumar R; Singh VN
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3622-3635. PubMed ID: 31748061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application.
    Zhao W; Pan D; Liu SF
    Nanoscale; 2016 May; 8(19):10160-5. PubMed ID: 27121893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band Tail Engineering in Kesterite Cu
    Gang MG; Shin SW; Suryawanshi MP; Ghorpade UV; Song Z; Jang JS; Yun JH; Cheong H; Yan Y; Kim JH
    J Phys Chem Lett; 2018 Aug; 9(16):4555-4561. PubMed ID: 30048140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Li Alloying by Postsynthesis Electrochemical Treatment of Cu
    Moser S; Aribia A; Scaffidi R; Gilshtein E; Brammertz G; Vermang B; Tiwari AN; Carron R
    ACS Appl Energy Mater; 2023 Dec; 6(24):12515-12525. PubMed ID: 38155875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag2ZnSn(S,Se)4: A highly promising absorber for thin film photovoltaics.
    Chagarov E; Sardashti K; Kummel AC; Lee YS; Haight R; Gershon TS
    J Chem Phys; 2016 Mar; 144(10):104704. PubMed ID: 26979701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Cu
    Ge S; Gao H; Hong R; Li J; Mai Y; Lin X; Yang G
    ChemSusChem; 2019 Apr; 12(8):1692-1699. PubMed ID: 30698923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source.
    Guo J; Pei Y; Zhou Z; Zhou W; Kou D; Wu S
    Nanoscale Res Lett; 2015 Dec; 10(1):1045. PubMed ID: 26293494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.