These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26837750)

  • 1. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.
    Ovesy M; Nazari MA; Mahdavian M
    Biol Cybern; 2016 Feb; 110(1):73-80. PubMed ID: 26837750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hill-type muscle model with serial damping and eccentric force-velocity relation.
    Haeufle DF; Günther M; Bayer A; Schmitt S
    J Biomech; 2014 Apr; 47(6):1531-6. PubMed ID: 24612719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of intrinsic muscle properties for stable hopping--stability is achieved by the force-velocity relation.
    Haeufle DF; Grimmer S; Seyfarth A
    Bioinspir Biomim; 2010 Mar; 5(1):16004. PubMed ID: 20185859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic model of skeletal muscle isometric contraction: I. an energetic-viscoelastic model for the skeletal muscle isometric force twitch.
    Phillips CA; Repperger DW; Neidhard-Doll AT; Reynolds DB
    Comput Biol Med; 2004 Jun; 34(4):307-22. PubMed ID: 15121002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of force production in skeletal muscle undergoing stretch.
    Cole GK; van den Bogert AJ; Herzog W; Gerritsen KG
    J Biomech; 1996 Aug; 29(8):1091-104. PubMed ID: 8817377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
    Frey Law LA; Shields RK
    J Appl Physiol (1985); 2006 Mar; 100(3):1027-36. PubMed ID: 16306255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The basic mechanical structure of the skeletal muscle machinery: One model for linking microscopic and macroscopic scales.
    Günther M; Haeufle DFB; Schmitt S
    J Theor Biol; 2018 Nov; 456():137-167. PubMed ID: 30048720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonlinear mathematical model of electrically stimulated skeletal muscle.
    Dorgan SJ; O'Malley MJ
    IEEE Trans Rehabil Eng; 1997 Jun; 5(2):179-94. PubMed ID: 9184904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical damping conditions for third order muscle models: implications for force control.
    Piovesan D; Pierobon A; Mussa Ivaldi FA
    J Biomech Eng; 2013 Oct; 135(10):101010. PubMed ID: 23896614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy efficient hopping with Hill-type muscle properties on segmented legs.
    Rosendo A; Iida F
    Bioinspir Biomim; 2016 Apr; 11(3):036002. PubMed ID: 27070710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of linear and non-linear activation dynamics models for insect muscle.
    Harischandra N; Clare AJ; Zakotnik J; Blackburn LML; Matheson T; Dürr V
    PLoS Comput Biol; 2019 Oct; 15(10):e1007437. PubMed ID: 31609992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear approach to modeling of electrically stimulated skeletal muscle.
    Gollee H; Murray-Smith DJ; Jarvis JC
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):406-15. PubMed ID: 11322528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Sensitivity Analysis of Muscle Activation Dynamics.
    Rockenfeller R; Günther M; Schmitt S; Götz T
    Comput Math Methods Med; 2015; 2015():585409. PubMed ID: 26417379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computer-graphics model of muscle activation and contraction dynamics.
    Barrett R; van Soest AJ; Neal R
    Sports Biomech; 2002 Jan; 1(1):105-21. PubMed ID: 14658138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maximum shortening velocity of muscle should be scaled with activation.
    Chow JW; Darling WG
    J Appl Physiol (1985); 1999 Mar; 86(3):1025-31. PubMed ID: 10066719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ISOFIT: a model-based method to measure muscle-tendon properties simultaneously.
    Wagner H; Siebert T; Ellerby DJ; Marsh RL; Blickhan R
    Biomech Model Mechanobiol; 2005 Aug; 4(1):10-9. PubMed ID: 15895262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG-force modeling using parallel cascade identification.
    Hashemi J; Morin E; Mousavi P; Mountjoy K; Hashtrudi-Zaad K
    J Electromyogr Kinesiol; 2012 Jun; 22(3):469-77. PubMed ID: 22284759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.