These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 26837773)
21. High C-X-C motif chemokine 5 expression is associated with malignant phenotypes of prostate cancer cells via autocrine and paracrine pathways. Qi Y; Zhao W; Li M; Shao M; Wang J; Sui H; Yu H; Shao W; Gui S; Li J; Jia X; Jiang D; Li Y; Zhang P; Wang S; Wang W Int J Oncol; 2018 Jul; 53(1):358-370. PubMed ID: 29749439 [TBL] [Abstract][Full Text] [Related]
22. Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. Jiang YG; Luo Y; He DL; Li X; Zhang LL; Peng T; Li MC; Lin YH Int J Urol; 2007 Nov; 14(11):1034-9. PubMed ID: 17956532 [TBL] [Abstract][Full Text] [Related]
23. Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer. Das S; Roth CP; Wasson LM; Vishwanatha JK Prostate; 2007 Oct; 67(14):1550-64. PubMed ID: 17705178 [TBL] [Abstract][Full Text] [Related]
24. The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Chen J; Rong N; Liu M; Xu C; Xiong Q; Lei Y Toxicol Appl Pharmacol; 2021 Jan; 411():115384. PubMed ID: 33359661 [TBL] [Abstract][Full Text] [Related]
25. MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer. Shen PF; Chen XQ; Liao YC; Chen N; Zhou Q; Wei Q; Li X; Wang J; Zeng H Prostate; 2014 May; 74(7):756-67. PubMed ID: 24644030 [TBL] [Abstract][Full Text] [Related]
26. Total saponins from Paris forrestii (Takht) H. Li. show the anticancer and RNA expression regulating effects on prostate cancer cells. Xia C; Chen L; Sun W; Yan R; Xia M; Wang Y; Yang D Biomed Pharmacother; 2020 Jan; 121():109674. PubMed ID: 31810132 [TBL] [Abstract][Full Text] [Related]
27. Expression of a human cell adhesion molecule, MUC18, in prostate cancer cell lines and tissues. Wu GJ; Varma VA; Wu MW; Wang SW; Qu P; Yang H; Petros JA; Lim SD; Amin MB Prostate; 2001 Sep; 48(4):305-15. PubMed ID: 11536311 [TBL] [Abstract][Full Text] [Related]
29. Clinical significance of CXCL16/CXCR6 expression in patients with prostate cancer. Ha HK; Lee W; Park HJ; Lee SD; Lee JZ; Chung MK Mol Med Rep; 2011; 4(3):419-24. PubMed ID: 21468586 [TBL] [Abstract][Full Text] [Related]
30. Hepatoma-derived growth factor: A survival-related protein in prostate oncogenesis and a potential target for vitamin K2. Shetty A; Dasari S; Banerjee S; Gheewala T; Zheng G; Chen A; Kajdacsy-Balla A; Bosland MC; Munirathinam G Urol Oncol; 2016 Nov; 34(11):483.e1-483.e8. PubMed ID: 27692835 [TBL] [Abstract][Full Text] [Related]
31. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin. Seim I; Jeffery PL; de Amorim L; Walpole CM; Fung J; Whiteside EJ; Lourie R; Herington AC; Chopin LK Reprod Biol Endocrinol; 2013 Jul; 11():70. PubMed ID: 23879975 [TBL] [Abstract][Full Text] [Related]
32. Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of prostate cancer DU145 cells. Nakane K; Fujita Y; Terazawa R; Atsumi Y; Kato T; Nozawa Y; Deguchi T; Ito M Int J Urol; 2012 Jan; 19(1):71-9. PubMed ID: 22050448 [TBL] [Abstract][Full Text] [Related]
33. Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism. Shi R; Xiao H; Yang T; Chang L; Tian Y; Wu B; Xu H Front Med; 2014 Dec; 8(4):456-63. PubMed ID: 25363395 [TBL] [Abstract][Full Text] [Related]
34. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Iwasaki M; Zhao H; Jaffer T; Unwith S; Benzonana L; Lian Q; Sakamoto A; Ma D Oncotarget; 2016 May; 7(18):26042-56. PubMed ID: 27028996 [TBL] [Abstract][Full Text] [Related]
35. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Sun X; He X; Zhang Y; Hosaka K; Andersson P; Wu J; Wu J; Jing X; Du Q; Hui X; Ding B; Guo Z; Hong A; Liu X; Wang Y; Ji Q; Beyaert R; Yang Y; Li Q; Cao Y Gut; 2022 Jan; 71(1):129-147. PubMed ID: 33568427 [TBL] [Abstract][Full Text] [Related]
36. A growth-related oncogene/CXC chemokine receptor 2 autocrine loop contributes to cellular proliferation in esophageal cancer. Wang B; Hendricks DT; Wamunyokoli F; Parker MI Cancer Res; 2006 Mar; 66(6):3071-7. PubMed ID: 16540656 [TBL] [Abstract][Full Text] [Related]
37. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Korbecki J; Bosiacki M; Chlubek D; Baranowska-Bosiacka I Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686093 [TBL] [Abstract][Full Text] [Related]
38. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Wu Q; Dhir R; Wells A Mol Cancer; 2012 Jan; 11():3. PubMed ID: 22236567 [TBL] [Abstract][Full Text] [Related]
39. CXCL2/CXCR2 axis induces cancer stem cell characteristics in CPT-11-resistant LoVo colon cancer cells via Gαi-2 and Gαq/11. Chen MC; Baskaran R; Lee NH; Hsu HH; Ho TJ; Tu CC; Lin YM; Viswanadha VP; Kuo WW; Huang CY J Cell Physiol; 2019 Jul; 234(7):11822-11834. PubMed ID: 30552676 [TBL] [Abstract][Full Text] [Related]