These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26837809)

  • 21. Thyroid hormone regulation of cardiac bioenergetics: role of intracellular creatine.
    Queiroz MS; Shao Y; Berkich DA; Lanoue KF; Ismail-Beigi F
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2527-33. PubMed ID: 12427598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Creatine kinase of heart mitochondria. Control of oxidative phosphorylation by the extramitochondrial concentrations of creatine and phosphocreatine.
    Jacobus WE; Diffley DM
    J Biol Chem; 1986 Dec; 261(35):16579-83. PubMed ID: 3782135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA; Korzeniewski B; Grassi B
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():67-84. PubMed ID: 17242492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle.
    Walsh B; Tonkonogi M; Söderlund K; Hultman E; Saks V; Sahlin K
    J Physiol; 2001 Dec; 537(Pt 3):971-8. PubMed ID: 11744769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative phosphorylation system during steady-state hypoxia in the dog brain.
    Nioka S; Smith DS; Chance B; Subramanian HV; Butler S; Katzenberg M
    J Appl Physiol (1985); 1990 Jun; 68(6):2527-35. PubMed ID: 2384431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle metabolic responses during 16 hours of intermittent heavy exercise.
    Green HJ; Duhamel TA; Holloway GP; Moule J; Ouyang J; Ranney D; Tupling AR
    Can J Physiol Pharmacol; 2007 Jun; 85(6):634-45. PubMed ID: 17823626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programming and regulation of metabolic homeostasis.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Mar; 308(6):E506-17. PubMed ID: 25605644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B; Zoladz JA
    J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linear relation between time constant of oxygen uptake kinetics, total creatine, and mitochondrial content in vitro.
    Glancy B; Barstow T; Willis WT
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C79-87. PubMed ID: 17942641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B; Zoladz JA
    J Physiol Sci; 2006 Feb; 56(1):1-12. PubMed ID: 16779908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. O2 and respiration in exercising human muscle. The regulation of oxidative phosphorylation in vivo.
    Jue T; Chung Y; Mole P; Tran TK; Kreutzer U; Sailasuta N; Hurd R
    Adv Exp Med Biol; 2000; 475():769-83. PubMed ID: 10849719
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo.
    Marcinek DJ; Ciesielski WA; Conley KE; Schenkman KA
    Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H1900-8. PubMed ID: 12775561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion.
    Smith SA; Montain SJ; Zientara GP; Fielding RA
    J Appl Physiol (1985); 2004 Jun; 96(6):2288-92. PubMed ID: 14978006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport.
    Miotto PM; Holloway GP
    Biochem J; 2016 Sep; 473(18):2831-43. PubMed ID: 27402793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles.
    Bahi L; Garnier A; Fortin D; Serrurier B; Veksler V; Bigard AX; Ventura-Clapier R
    J Cell Physiol; 2005 Jun; 203(3):589-98. PubMed ID: 15605382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simple model of aerobic metabolism: applications to work transitions in muscle.
    Funk CI; Clark A; Connett RJ
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C995-1005. PubMed ID: 2141761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relation between in vivo and in vitro measurements of skeletal muscle oxidative metabolism.
    Larson-Meyer DE; Newcomer BR; Hunter GR; Joanisse DR; Weinsier RL; Bamman MM
    Muscle Nerve; 2001 Dec; 24(12):1665-76. PubMed ID: 11745976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.