BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 26838336)

  • 1. Valorization of Flue Gas by Combining Photocatalytic Gas Pretreatment with Microalgae Production.
    Eynde EV; Lenaerts B; Tytgat T; Blust R; Lenaerts S
    Environ Sci Technol; 2016 Mar; 50(5):2538-45. PubMed ID: 26838336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 , NOx and SOx removal from flue gas via microalgae cultivation: a critical review.
    Yen HW; Ho SH; Chen CY; Chang JS
    Biotechnol J; 2015 Jun; 10(6):829-39. PubMed ID: 25931246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas.
    Aslam A; Thomas-Hall SR; Mughal TA; Schenk PM
    Bioresour Technol; 2017 Jun; 233():271-283. PubMed ID: 28285218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass transfer characteristics and effect of flue gas used in microalgae culture.
    Wang B; Xu YF; Sun ZL
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7013-7025. PubMed ID: 36173453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization.
    Vuppaladadiyam AK; Yao JG; Florin N; George A; Wang X; Labeeuw L; Jiang Y; Davis RW; Abbas A; Ralph P; Fennell PS; Zhao M
    ChemSusChem; 2018 Jan; 11(2):334-355. PubMed ID: 29165921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated lipid production, CO
    Du K; Wen X; Wang Z; Liang F; Luo L; Peng X; Xu Y; Geng Y; Li Y
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16195-16209. PubMed ID: 30972683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Adaptability of oleaginous microalgae Chlorococcum alkaliphilus MC-1 cultivated with flue gas].
    Yang X; Xiang W; Zhang F; Wu H; He H; Fan J
    Sheng Wu Gong Cheng Xue Bao; 2013 Mar; 29(3):370-81. PubMed ID: 23789278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofixation of Air Emissions and Biomass Valorization-Evaluation of Microalgal Biotechnology.
    Biscaia WL; Miyawaki B; de Mello TC; de Vasconcelos EC; de Arruda NMB; Maranho LT
    Appl Biochem Biotechnol; 2022 Sep; 194(9):4033-4048. PubMed ID: 35587326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.
    Kao CY; Chen TY; Chang YB; Chiu TW; Lin HY; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2014 Aug; 166():485-93. PubMed ID: 24950094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a microalga, Scenedesmus obliquus PF3, for the biological removal of nitric oxide (NO) and carbon dioxide.
    Ma S; Li D; Yu Y; Li D; Yadav RS; Feng Y
    Environ Pollut; 2019 Sep; 252(Pt A):344-351. PubMed ID: 31158663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimize flue gas settings to promote microalgae growth in photobioreactors via computer simulations.
    He L; Chen AB; Yu Y; Kucera L; Tang Y
    J Vis Exp; 2013 Oct; (80):. PubMed ID: 24121788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.
    Cheah WY; Show PL; Chang JS; Ling TC; Juan JC
    Bioresour Technol; 2015 May; 184():190-201. PubMed ID: 25497054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification and improvement of microalgae strains for strengthening CO
    Cheng J; Zhu Y; Zhang Z; Yang W
    Bioresour Technol; 2019 Nov; 291():121850. PubMed ID: 31358426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas.
    Zhu X; Rong J; Chen H; He C; Hu W; Wang Q
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2073-82. PubMed ID: 26754812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.
    Chen W; Zhang S; Rong J; Li X; Chen H; He C; Wang Q
    Environ Sci Technol; 2016 Feb; 50(3):1620-7. PubMed ID: 26751001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.