BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 26838393)

  • 1. Novel molecularly-imprinted solid-phase microextraction fiber coupled with gas chromatography for analysis of furan.
    Hashemi-Moghaddam H; Ahmadifard M
    Talanta; 2016 Apr; 150():148-54. PubMed ID: 26838393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and selective recognition of a novel solid-phase microextraction fiber combined with molecularly imprinted polymers for the extraction of parabens in soy sample.
    He J; Chen S; Jiang Y; Shen Y; Zhu J; Wei H; Zhang H; Lu K
    J Sep Sci; 2012 Jan; 35(2):308-14. PubMed ID: 22162512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of furan in foods by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry.
    Altaki MS; Santos FJ; Galceran MT
    J Chromatogr A; 2007 Mar; 1146(1):103-9. PubMed ID: 17307192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer: application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion.
    Djozan D; Mahkam M; Ebrahimi B
    J Chromatogr A; 2009 Mar; 1216(12):2211-9. PubMed ID: 19185305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated headspace solid-phase microextraction versus headspace for the analysis of furan in foods by gas chromatography-mass spectrometry.
    Altaki MS; Santos FJ; Galceran MT
    Talanta; 2009 Jun; 78(4-5):1315-20. PubMed ID: 19362194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of UMCM-1 based monolithic and hollow fiber - Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID.
    Mirzajani R; Kardani F; Ramezani Z
    Food Chem; 2020 Jun; 314():126179. PubMed ID: 31968292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple headspace solid-phase microextraction for quantifying volatile free fatty acids in cheeses.
    Rincón AA; Pino V; Ayala JH; Afonso AM
    Talanta; 2014 Nov; 129():183-90. PubMed ID: 25127582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced in-out-tube solid-phase microextraction by molecularly imprinted polymers-coated capillary followed by HPLC for Endocrine Disrupting Chemicals analysis.
    Wang X; Huang P; Ma X; Du X; Lu X
    Talanta; 2019 Mar; 194():7-13. PubMed ID: 30609593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient method for the simultaneous determination of furan, 2-methylfuran and 2-pentylfuran in fruit juices by headspace solid phase microextraction and gas chromatography-flame ionisation detector.
    Hu G; Zhu Y; Hernandez M; Koutchma T; Shao S
    Food Chem; 2016 Feb; 192():9-14. PubMed ID: 26304314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of PAHs in air by collection on XAD-2 adsorbent then microwave-assisted thermal desorption coupled with headspace solid-phase microextraction and gas chromatography with mass spectrometric detection.
    Wei MC; Chang WT; Jen JF
    Anal Bioanal Chem; 2007 Feb; 387(3):999-1005. PubMed ID: 17200847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons.
    Mohammadi A; Yamini Y; Alizadeh N
    J Chromatogr A; 2005 Jan; 1063(1-2):1-8. PubMed ID: 15700451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and application of graphene oxide-based surface molecularly imprinted polymer for monolithic fiber array solid phase microextraction of organophosphate flame retardants in environmental water.
    Chen L; Jian Y; Cheng J; Yan L; Huang X
    J Chromatogr A; 2020 Jul; 1623():461200. PubMed ID: 32505289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sol-gel molecularly imprinted polymer for selective solid phase microextraction of organophosphorous pesticides.
    Wang YL; Gao YL; Wang PP; Shang H; Pan SY; Li XJ
    Talanta; 2013 Oct; 115():920-7. PubMed ID: 24054683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of furan in coffee of different provenance by head-space solid phase microextraction gas chromatography-mass spectrometry: effect of brewing procedures.
    La Pera L; Liberatore A; Avellone G; Fanara S; Dugo G; Agozzino P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jun; 26(6):786-92. PubMed ID: 19680951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of furan levels in select Chinese foods by solid phase microextraction-gas chromatography/mass spectrometry method and dietary exposure estimation of furan in the Chinese population.
    Sijia W; Enting W; Yuan Y
    Food Chem Toxicol; 2014 Feb; 64():34-40. PubMed ID: 24262489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion.
    Djozan D; Ebrahimi B
    Anal Chim Acta; 2008 Jun; 616(2):152-9. PubMed ID: 18482598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of molecularly imprinted solid-phase microextraction fiber for the selective removal and extraction of the antiviral drug abacavir in environmental and biological matrices.
    Terzopoulou Z; Papageorgiou M; Kyzas GZ; Bikiaris DN; Lambropoulou DA
    Anal Chim Acta; 2016 Mar; 913():63-75. PubMed ID: 26944990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of molecularly imprinted solid-phase micro-extraction fibers for selective extraction of phthalates in an aqueous sample.
    He J; Lv R; Zhan H; Wang H; Cheng J; Lu K; Wang F
    Anal Chim Acta; 2010 Jul; 674(1):53-8. PubMed ID: 20638499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and evaluation of solid-phase microextraction fibers based on monolithic molecularly imprinted polymers for selective extraction of diacetylmorphine and analogous compounds.
    Djozan D; Baheri T
    J Chromatogr A; 2007 Sep; 1166(1-2):16-23. PubMed ID: 17723231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-port-derivatization gas chromatography-mass spectrometry.
    Prieto A; Vallejo A; Zuloaga O; Paschke A; Sellergen B; Schillinger E; Schrader S; Möder M
    Anal Chim Acta; 2011 Oct; 703(1):41-51. PubMed ID: 21843673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.