BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26838411)

  • 1. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides.
    Yao J; Sun N; Deng C; Zhang X
    Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designed synthesis of titania nanoparticles coated hierarchially ordered macro/mesoporous silica for selective enrichment of phosphopeptides.
    Yan Y; Zhang X; Deng C
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5467-71. PubMed ID: 24666404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides.
    Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ
    J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples.
    Hu X; Li Y; Miao A; Deng C
    Mikrochim Acta; 2020 Jun; 187(7):400. PubMed ID: 32572637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment.
    Yao J; Sun N; Wang J; Xie Y; Deng C; Zhang X
    Proteomics; 2017 Apr; 17(8):. PubMed ID: 28160437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal oxide affinity chromatography platform-polydopamine coupled functional two-dimensional titania graphene nanohybrid for phosphoproteome research.
    Yan Y; Sun X; Deng C; Li Y; Zhang X
    Anal Chem; 2014 May; 86(9):4327-32. PubMed ID: 24673251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides.
    Sun N; Deng C; Li Y; Zhang X
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11799-804. PubMed ID: 24983703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides.
    Lin H; Chen H; Shao X; Deng C
    Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of immobilized Sn
    Lin H; Deng C
    Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of on-plate immobilized metal ion affinity chromatography platform via dopamine chemistry for highly selective isolation of phosphopeptides with matrix assisted laser desorption/ionization mass spectrometry analysis.
    Shi C; Lin Q; Deng C
    Talanta; 2015 Apr; 135():81-6. PubMed ID: 25640129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic Mesoporous Silica Nanoparticles with Abundant Ti
    Hong Y; Yao Y; Zhao H; Sheng Q; Ye M; Yu C; Lan M
    Anal Chem; 2018 Jun; 90(12):7617-7625. PubMed ID: 29799184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides.
    Tan S; Wang J; Han Q; Liang Q; Ding M
    Mikrochim Acta; 2018 Jun; 185(7):316. PubMed ID: 29876662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile synthesis of titania nanoparticles coated carbon nanotubes for selective enrichment of phosphopeptides for mass spectrometry analysis.
    Yan Y; Lu J; Deng C; Zhang X
    Talanta; 2013 Mar; 107():30-5. PubMed ID: 23598188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.
    Zhang Q; Zhang Q; Xiong Z; Wan H; Chen X; Li H; Zou H
    Talanta; 2016; 146():272-8. PubMed ID: 26695263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva.
    Li Y; Liu L; Wu H; Deng C
    Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS.
    Jiang D; Song N; Li X; Ma J; Jia Q
    Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28722797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophilic modification of titania nanomaterials as a biofunctional adsorbent for selective enrichment of phosphopeptides.
    Liu H; Yang T; Dai J; Zhu J; Li X; Wen R; Yang X
    Analyst; 2015 Oct; 140(19):6652-9. PubMed ID: 26299437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic modification of silica-titania mesoporous materials as restricted-access matrix adsorbents for enrichment of phosphopeptides.
    Wang F; Guan Y; Zhang S; Xia Y
    J Chromatogr A; 2012 Jul; 1246():76-83. PubMed ID: 22410151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective enrichment of phosphopeptides using Zr
    Dai J; Wang M; Liu H
    Talanta; 2017 Mar; 164():222-227. PubMed ID: 28107921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.