BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 26838411)

  • 21. Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO
    Salimi K; Usta DD; Çelikbıçak Ö; Pinar A; Salih B; Tuncel A
    Colloids Surf B Biointerfaces; 2017 May; 153():280-290. PubMed ID: 28279934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of Hf(4+)-immobilized polydopamine-coated magnetic graphene for highly selective enrichment of phosphopeptides.
    Lin H; Deng C
    Talanta; 2016; 149():91-97. PubMed ID: 26717818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid enrichment of phosphopeptides by SiO2-TiO2 composite fibers.
    He XM; Zhu GT; Li XS; Yuan BF; Shi ZG; Feng YQ
    Analyst; 2013 Sep; 138(18):5495-502. PubMed ID: 23892395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TiO
    Irfan A; Feng W; Liu K; Habib K; Qu Q; Yang L
    Talanta; 2021 Dec; 235():122737. PubMed ID: 34517605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilized metal ion affinity chromatography ZipTip pipette tip with polydopamine modification and Ti⁴⁺ immobilization for selective enrichment and isolation of phosphopeptides.
    Shi C; Deng C
    Talanta; 2015 Oct; 143():464-468. PubMed ID: 26078185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria.
    Zhang L; Liang Z; Yang K; Xia S; Wu Q; Zhang L; Zhang Y
    Anal Chim Acta; 2012 Jun; 729():26-35. PubMed ID: 22595430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly selective enrichment of phosphopeptides by titanium (IV) attached monodisperse-porous poly(vinylphosphonic acid-co-ethylene dimethacrylate) microspheres.
    Salimi K; Usta DD; Çelikbıçak Ö; Pınar A; Salih B; Tuncel A
    J Chromatogr A; 2017 May; 1496():9-19. PubMed ID: 28351536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and synthesis of magnetic binary metal oxides nanocomposites through dopamine chemistry for highly selective enrichment of phosphopeptides.
    Wang M; Sun X; Li Y; Deng C
    Proteomics; 2016 Mar; 16(6):915-9. PubMed ID: 26702589
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti
    Hong Y; Zhan Q; Zheng Y; Pu C; Zhao H; Lan M
    Talanta; 2019 May; 197():77-85. PubMed ID: 30771991
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides.
    Sun H; Zhang Q; Zhang L; Zhang W; Zhang L
    J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides.
    Lu Z; Duan J; He L; Hu Y; Yin Y
    Anal Chem; 2010 Sep; 82(17):7249-58. PubMed ID: 20712324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides.
    Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H
    Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides.
    Wang B; Wu H; Yan Y; Tang K; Ding CF
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8881. PubMed ID: 32638431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Titanium-containing magnetic mesoporous silica spheres: effective enrichment of peptides and simultaneous separation of nonphosphopeptides and phosphopeptides.
    Li XS; Su X; Zhu GT; Zhao Y; Yuan BF; Guo L; Feng YQ
    J Sep Sci; 2012 Jun; 35(12):1506-13. PubMed ID: 22740261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Trypsin functionalization and zirconia coating of mesoporous silica nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis of phosphoprotein.
    Zhang X; Wang F; Xia Y
    J Chromatogr A; 2013 Sep; 1306():20-6. PubMed ID: 23921263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes.
    Yan Y; Zheng Z; Deng C; Zhang X; Yang P
    Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides.
    Hussain D; Najam-Ul-Haq M; Majeed S; Musharraf SG; Lu Q; He X; Feng YQ
    Anal Bioanal Chem; 2019 Jun; 411(15):3373-3382. PubMed ID: 31016328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel molybdenum disulfide nanosheet loaded Titanium/Zirconium bimetal oxide affinity probe for efficient enrichment of phosphopeptides in A549 cells.
    Ma ZQ; Wang YH; Peng Y; Guo X; Meng Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 May; 1199():123235. PubMed ID: 35447520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titania coated magnetic mesoporous hollow silica microspheres: fabrication and application to selective enrichment of phosphopeptides.
    Wu JH; Li XS; Zhao Y; Gao Q; Guo L; Feng YQ
    Chem Commun (Camb); 2010 Dec; 46(47):9031-3. PubMed ID: 21052584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
    Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M
    Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.