These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26838516)

  • 1. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer.
    Fu G; Sanjay ST; Dou M; Li X
    Nanoscale; 2016 Mar; 8(10):5422-7. PubMed ID: 26838516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of Nanoparticle-Mediated Photothermal Effect of TMB-H
    Fu G; Sanjay ST; Zhou W; Brekken RA; Kirken RA; Li X
    Anal Chem; 2018 May; 90(9):5930-5937. PubMed ID: 29641893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ amplified photothermal immunoassay for neuron-specific enolase with enhanced sensitivity using Prussian blue nanoparticle-loaded liposomes.
    Zhi LJ; Sun AL; Tang D
    Analyst; 2020 Jun; 145(12):4164-4172. PubMed ID: 32369047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New photothermal immunoassay of human chorionic gonadotropin using Prussian blue nanoparticle-based photothermal conversion.
    Hong G; Zhang D; He Y; Yang Y; Chen P; Yang H; Zhou Z; Liu Y; Wang Y
    Anal Bioanal Chem; 2019 Oct; 411(26):6837-6845. PubMed ID: 31471682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy.
    Wu M; Zhang D; Zeng Y; Wu L; Liu X; Liu J
    Nanotechnology; 2015 Mar; 26(11):115102. PubMed ID: 25721867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cost-effective and sensitive colorimetric immunosensing using an iron oxide-to-Prussian blue nanoparticle conversion strategy.
    Fu G; Sanjay ST; Li X
    Analyst; 2016 Jun; 141(12):3883-9. PubMed ID: 27140740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicolor and photothermal dual-readout biosensor for visual detection of prostate specific antigen.
    Wei Y; Wang D; Zhang Y; Sui J; Xu Z
    Biosens Bioelectron; 2019 Sep; 140():111345. PubMed ID: 31150984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au-coated Fe
    Guo H; Su X; Su Q; Zhuang W; You Z
    Anal Bioanal Chem; 2021 Jan; 413(1):235-244. PubMed ID: 33048173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hollow Prussian Blue Nanospheres for Photothermal/Chemo-Synergistic Therapy.
    Lu L; Zhang C; Zou B; Wang Y
    Int J Nanomedicine; 2020; 15():5165-5177. PubMed ID: 32764943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared photothermal immunoassay for pancreatic cancer biomarker CA 19-9 on a digital thermometer.
    Han X; Lin S; Li Y; Cheng C; Han X
    Anal Chim Acta; 2020 Feb; 1098():117-124. PubMed ID: 31948574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prussian Blue Nanoparticles as a Versatile Photothermal Tool.
    Dacarro G; Taglietti A; Pallavicini P
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29891819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isoniazide modified Ag nanoparticles triggered photothermal immunoassay for carcinoembryonic antigen detection.
    Xiang J; Zhang B; Shi Y; Wen Y; Yuan Y; Lin J; Zhao Z; Li J; Cheng Y
    Anal Biochem; 2023 Dec; 683():115370. PubMed ID: 37890548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal immunoassay for carcinoembryonic antigen based on the inhibition of cysteine-induced aggregation of gold nanoparticles by copper ion using a common thermometer as readout.
    Tao Y; Shi W; Luo F; Qiu B; Lin Z
    Anal Chim Acta; 2021 Oct; 1181():338929. PubMed ID: 34556217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of prussian blue nanoparticles.
    Xue X; Gao M; Rao H; Luo M; Wang H; An P; Feng T; Lu X; Xue Z; Liu X
    Anal Chim Acta; 2020 Apr; 1105():197-207. PubMed ID: 32138919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photomagnetic Prussian blue nanocubes: Synthesis, characterization, and biomedical applications.
    Dumani DS; Cook JR; Kubelick KP; Luci JJ; Emelianov SY
    Nanomedicine; 2020 Feb; 24():102138. PubMed ID: 31846739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [AuCl(4)] (-) and Fe (3+)/[Fe(CN) (6)] (3-) ions-derivated immunosensing interface for electrochemical immunoassay of carcinoembryonic antigen in human serum.
    Liu K; Yuan R; Chai Y; Tang D; An H
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):179-85. PubMed ID: 19221806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ti
    Cai G; Yu Z; Tong P; Tang D
    Nanoscale; 2019 Sep; 11(33):15659-15667. PubMed ID: 31411624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of gold nanorod-embedded polymeric nanoparticles by a nanoprecipitation method for use as photothermal agents.
    Kim E; Yang J; Choi J; Suh JS; Huh YM; Haam S
    Nanotechnology; 2009 Sep; 20(36):365602. PubMed ID: 19687560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform.
    Zhou W; Hu K; Kwee S; Tang L; Wang Z; Xia J; Li X
    Anal Chem; 2020 Feb; 92(3):2739-2747. PubMed ID: 31977184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcysteine-decorated Prussian blue nanoparticles for strong photothermal sterilization and focal infection treatment.
    Cai S; Qian J; Yang S; Kuang L; Hua D
    Colloids Surf B Biointerfaces; 2019 Sep; 181():31-38. PubMed ID: 31121379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.