BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26838822)

  • 1. Wool fibril sponges with perspective biomedical applications.
    Patrucco A; Cristofaro F; Simionati M; Zoccola M; Bruni G; Fassina L; Visai L; Magenes G; Mossotti R; Montarsolo A; Tonin C
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():42-50. PubMed ID: 26838822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment.
    Aluigi A; Corbellini A; Rombaldoni F; Zoccola M; Canetti M
    Int J Biol Macromol; 2013 Jun; 57():30-7. PubMed ID: 23466495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity.
    Katoh K; Tanabe T; Yamauchi K
    Biomaterials; 2004 Aug; 25(18):4255-62. PubMed ID: 15046915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous hydrogel of wool keratin prepared by a novel method: an extraction with guanidine/2-mercaptoethanol solution followed by a dialysis.
    Ozaki Y; Takagi Y; Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():146-54. PubMed ID: 25063104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of PEG-modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility.
    Ji J; Chen G; Liu Z; Li L; Yuan J; Wang P; Xu B; Fan X
    J Biomed Mater Res B Appl Biomater; 2021 Sep; 109(9):1303-1312. PubMed ID: 33421269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced chondrogenic responses of human articular chondrocytes onto silk fibroin/wool keratose scaffolds treated with microwave-induced argon plasma.
    Cheon YW; Lee WJ; Baek HS; Lee YD; Park JC; Park YH; Ki CS; Chung KH; Rah DK
    Artif Organs; 2010 May; 34(5):384-92. PubMed ID: 20633153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.
    Esparza Y; Bandara N; Ullah A; Wu J
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():446-453. PubMed ID: 29853111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation.
    Kim BS; Park KE; Park WH; Lee J
    Biomed Mater; 2013 Aug; 8(4):045006. PubMed ID: 23735650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wool Keratin 3D Scaffolds with Light-Triggered Antimicrobial Activity.
    Ferroni C; Sotgiu G; Sagnella A; Varchi G; Guerrini A; Giuri D; Polo E; Orlandi VT; Marras E; Gariboldi M; Monti E; Aluigi A
    Biomacromolecules; 2016 Sep; 17(9):2882-90. PubMed ID: 27463471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel.
    Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():19-25. PubMed ID: 30033245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Production of Calcified Bone Matrix onto Wool Keratin Scaffolds via Osteogenic Factors and Electromagnetic Stimulus.
    Bloise N; Patrucco A; Bruni G; Montagna G; Caringella R; Fassina L; Tonin C; Visai L
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and applications of keratin biomaterials from natural keratin wastes.
    Yan RR; Gong JS; Su C; Liu YL; Qian JY; Xu ZH; Shi JS
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2349-2366. PubMed ID: 35347378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wool keratin: a novel building block for layer-by-layer self-assembly.
    Yang X; Zhang H; Yuan X; Cui S
    J Colloid Interface Sci; 2009 Aug; 336(2):756-60. PubMed ID: 19447401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow behavior of regenerated wool-keratin proteins in different mediums.
    Alemdar A; Iridag Y; Kazanci M
    Int J Biol Macromol; 2005 Apr; 35(3-4):151-3. PubMed ID: 15811469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keratins extracted from Merino wool and Brown Alpaca fibres: thermal, mechanical and biological properties of PLLA based biocomposites.
    Fortunati E; Aluigi A; Armentano I; Morena F; Emiliani C; Martino S; Santulli C; Torre L; Kenny JM; Puglia D
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():394-406. PubMed ID: 25492212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of keratin in biomedical applications.
    Vasconcelos A; Cavaco-Paulo A
    Curr Drug Targets; 2013 May; 14(5):612-9. PubMed ID: 23410124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the structure and properties of wool keratin regenerated from formic acid.
    Aluigi A; Zoccola M; Vineis C; Tonin C; Ferrero F; Canetti M
    Int J Biol Macromol; 2007 Aug; 41(3):266-73. PubMed ID: 17467791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keratinous materials: Structures and functions in biomedical applications.
    Rajabi M; Ali A; McConnell M; Cabral J
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110612. PubMed ID: 32204061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation.
    Sando L; Kim M; Colgrave ML; Ramshaw JA; Werkmeister JA; Elvin CM
    J Biomed Mater Res A; 2010 Dec; 95(3):901-11. PubMed ID: 20845488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.