These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

793 related articles for article (PubMed ID: 26838839)

  • 1. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.
    Mohanty S; Larsen LB; Trifol J; Szabo P; Burri HV; Canali C; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():569-78. PubMed ID: 26117791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of dual-pore scaffolds using SLUP (salt leaching using powder) and WNM (wire-network molding) techniques.
    Cho YS; Hong MW; Kim SY; Lee SJ; Lee JH; Kim YY; Cho YS
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():546-55. PubMed ID: 25491863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW; Wang S; Lu L; Jabbari E; Currier BL; Yaszemski MJ
    Tissue Eng; 2006 Oct; 12(10):2801-11. PubMed ID: 17518649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques.
    Grottkau BE; Hui Z; Yao Y; Pang Y
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
    Zhang S; Vijayavenkataraman S; Lu WF; Fuh JYH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1329-1351. PubMed ID: 30300964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering.
    Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography.
    Prasopthum A; Shakesheff KM; Yang J
    Biofabrication; 2018 Jan; 10(2):025002. PubMed ID: 29235445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.
    Tan JY; Chua CK; Leong KF
    Biomed Microdevices; 2013 Feb; 15(1):83-96. PubMed ID: 22923215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelatin/PVA scaffolds fabricated using a 3D-printing process employed with a low-temperature plate for hard tissue regeneration: Fabrication and characterizations.
    Kim H; Yang GH; Choi CH; Cho YS; Kim G
    Int J Biol Macromol; 2018 Dec; 120(Pt A):119-127. PubMed ID: 30056041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessments for bone regeneration using the polycaprolactone SLUP (salt-leaching using powder) scaffold.
    Cho YS; Hong MW; Quan M; Kim SY; Lee SH; Lee SJ; Kim YY; Cho YS
    J Biomed Mater Res A; 2017 Dec; 105(12):3432-3444. PubMed ID: 28879670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, evaluation, and optimization of 3D printed truss scaffolds for bone tissue engineering.
    Shirzad M; Zolfagharian A; Matbouei A; Bodaghi M
    J Mech Behav Biomed Mater; 2021 Aug; 120():104594. PubMed ID: 34029944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.