These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 26838861)
1. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation. Przekora A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():355-61. PubMed ID: 26838861 [TBL] [Abstract][Full Text] [Related]
2. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism. Przekora A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():225-233. PubMed ID: 28183603 [TBL] [Abstract][Full Text] [Related]
3. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Przekora A; Benko A; Blazewicz M; Ginalska G Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048 [TBL] [Abstract][Full Text] [Related]
4. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Przekora A; Vandrovcova M; Travnickova M; Pajorova J; Molitor M; Ginalska G; Bacakova L Biomed Mater; 2017 Feb; 12(1):015030. PubMed ID: 28054934 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
7. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
8. The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro. Kazimierczak P; Koziol M; Przekora A Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498630 [TBL] [Abstract][Full Text] [Related]
9. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
10. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
11. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
12. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
13. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Klimek K; Przekora A; Pałka K; Ginalska G J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050 [TBL] [Abstract][Full Text] [Related]
14. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
15. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
16. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Shakir M; Jolly R; Khan MS; Rauf A; Kazmi S Int J Biol Macromol; 2016 Dec; 93(Pt A):276-289. PubMed ID: 27543347 [TBL] [Abstract][Full Text] [Related]
17. Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering. Lima PA; Resende CX; Soares GD; Anselme K; Almeida LE Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3389-95. PubMed ID: 23706225 [TBL] [Abstract][Full Text] [Related]
18. Addition of 1,3-β-D-glucan to chitosan-based composites enhances osteoblast adhesion, growth, and proliferation. Przekora A; Ginalska G Int J Biol Macromol; 2014 Sep; 70():474-81. PubMed ID: 25064557 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering. Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]