These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 26838885)

  • 1. Biocompatibility of new Ti-Nb-Ta base alloys.
    Hussein AH; Gepreel MA; Gouda MK; Hefnawy AM; Kandil SH
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():574-8. PubMed ID: 26838885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the cell compatibility and mechanical properties in TiZrNbTa medium-entropy alloy/β-Ti composites through phase transformation.
    Du P; Cui Z; Xiang T; Li Y; Zhang L; Cai Z; Zhao M; Xie G
    Acta Biomater; 2024 Jun; 181():469-482. PubMed ID: 38723926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Zr Addition on the Microstructural Evolution, Mechanical Properties, and Corrosion Behavior of Novel Biomedical Ti-Zr-Mo-Mn Alloys.
    Li Z; Wo J; Fu Y; Xu X; Wang B; Liu H; You D; Sun G; Li W; Wang X
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6935-6946. PubMed ID: 37941371
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Singh N; Srikanth KP; Gopal V; Rajput M; Manivasagam G; Prashanth KG; Chatterjee K; Suwas S
    J Mater Chem B; 2024 Jun; 12(24):5982-5993. PubMed ID: 38809161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and preparation of Ti-xFe antibacterial titanium alloys based on micro-area potential difference.
    Xie Y; Cui S; Hu J; Yu H; Xuan A; Wei Y; Lian Y; Wu J; Du W; Zhang E
    Biometals; 2024 Apr; 37(2):337-355. PubMed ID: 37904075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Novel Antibacterial Ti-Nb-Ga Alloys with Low Stiffness for Medical Implant Applications.
    McHendrie R; Nguyen NH; Nguyen MT; Fallahnezhad K; Vasilev K; Truong VK; Hashemi R
    J Funct Biomater; 2024 Jun; 15(6):. PubMed ID: 38921540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Partial Substitution of Zr for Ti Solvent on Young's Modulus, Strength, and Biocompatibility in Beta Ti Alloy.
    Nomura Y; Okada M; Manaka T; Tsuchiya T; Iwasaki M; Matsuda K; Ishimoto T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review: Design from Beta Titanium Alloys to Medium-Entropy Alloys for Biomedical Applications.
    Wong KK; Hsu HC; Wu SC; Ho WF
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progress in the Optimization of Compositional Design and Thermomechanical Processing of Metastable β Ti Alloys for Biomedical Applications.
    C PR; N B KB; A RK; Shanmugam V; N S B; Sahani R; Behera L; A P; Thansekhar MR
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3528-3547. PubMed ID: 38722763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Investigation of the Impact of Niobium Additions on the Structural Characteristics and Properties of Ti-5Cr-xNb Alloys for Biomedical Applications.
    Hsu HC; Wu SC; Fang WC; Ho WF
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Low-Modulus Biocompatible Titanium Alloys Using Machine Learning.
    Marković G; Manojlović V; Ružić J; Sokić M
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of In Vivo Biocompatibility in Preclinical Studies of a Finger Implant Medical Device Correlated with Mechanical Properties and Microstructure.
    Major R; Grajoszek A; Byrski A; Szawiraacz K; Barski JJ; Major Ł; Gawlikowski M; Kopernik M; Kot M; Dyner A; Lackner JM
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):376-388. PubMed ID: 38131318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritizing biomaterials for spinal disc implants by a fuzzy AHP and TOPSIS decision making method.
    Ansaripour H; Haeussler KL; Ferguson SJ; Flohr M
    Sci Rep; 2023 Dec; 13(1):21531. PubMed ID: 38057609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Nb-Content on the Microstructures and Corrosion Properties of CrFeCoNiNb
    Tsau CH; Yeh CY; Tsai MC
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the Phase Composition of Titanium Alloys on Cell Adhesion and Surface Colonization.
    Straumal BB; Anisimova NY; Kiselevskiy MV; Novruzov KM; Korneva A; Gornakova AS; Kilmametov AR; Sommadossi S; Davdian G
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ultra-Low Modulus of Ductile TiZrHfTa Biomedical High-Entropy Alloys through Deformation Induced Martensitic Transformation/Twinning/Amorphization.
    Qian B; Li X; Wang Y; Hou J; Liu J; Zou S; An F; Lu W
    Adv Mater; 2024 Jun; 36(24):e2310926. PubMed ID: 38446005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional analysis for the correlation of physico-chemical attributes to osteoblastogenesis in TiNbZrSnTa alloys.
    Torres-Sanchez C; Alabort E; Herring O; Bell H; Tam CY; Yang S; Conway PP
    Biomater Adv; 2023 Oct; 153():213572. PubMed ID: 37566936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomedical Applications of Titanium Alloys: A Comprehensive Review.
    Marin E; Lanzutti A
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications.
    McHendrie R; Xiao W; Truong VK; Hashemi R
    Biomimetics (Basel); 2023 Nov; 8(8):. PubMed ID: 38132512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Nb, Ta, and Ti on the Oxidation of a New Polycrystalline Ni-Based Superalloy.
    Wo JWX; Hardy MC; Stone HJ
    High Temp Corros Mater; 2024; 101(3):485-509. PubMed ID: 38736430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.