These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 26838893)

  • 1. Prediction of the "in vivo" mechanical behavior of biointegrable acrylic macroporous scaffolds.
    Vikingsson L; Antolinos-Turpin CM; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():651-8. PubMed ID: 26838893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An "in vitro" experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage.
    Vikingsson L; Gallego Ferrer G; Gómez-Tejedor JA; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2014 Apr; 32():125-131. PubMed ID: 24447878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.
    Panadero JA; Vikingsson L; Gomez Ribelles JL; Lanceros-Mendez S; Sencadas V
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):1037-43. PubMed ID: 25230332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic surface modification of acrylate-based biomaterials.
    Arnal-Pastor M; Comín-Cebrián S; Martínez-Ramos C; Monleón Pradas M; Vallés-Lluch A
    J Biomater Appl; 2016 Apr; 30(9):1429-41. PubMed ID: 26767395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage.
    Vikingsson L; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Biomech; 2015 May; 48(7):1310-7. PubMed ID: 25814177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications.
    Kemppainen JM; Hollister SJ
    J Biomed Mater Res A; 2010 Jul; 94(1):9-18. PubMed ID: 20091702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a macroporous polyvinyl alcohol scaffold for the repair of focal articular cartilage defects.
    Ng KW; Torzilli PA; Warren RF; Maher SA
    J Tissue Eng Regen Med; 2014 Feb; 8(2):164-8. PubMed ID: 22549901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications.
    Jaiswal M; Koul V
    J Biomater Appl; 2013 Mar; 27(7):848-61. PubMed ID: 22207603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional scaffolds as a model system for neural and endothelial 'in vitro' culture.
    Veiga DD; Antunes JC; Gómez RG; Mano JF; Ribelles JL; Soria JM
    J Biomater Appl; 2011 Sep; 26(3):293-310. PubMed ID: 20566656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model.
    Alió del Barrio JL; Chiesa M; Gallego Ferrer G; Garagorri N; Briz N; Fernandez-Delgado J; Sancho-Tello Valls M; Botella CC; García-Tuñón I; Bataille L; Rodriguez A; Arnalich-Montiel F; Gómez Ribelles JL; Antolinos-Turpín CM; Gómez-Tejedor JA; Alió JL; De Miguel MP
    J Biomed Mater Res A; 2015 Mar; 103(3):1106-18. PubMed ID: 24910285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel scaffold geometry for chondral applications: theoretical model and in vivo validation.
    Scaglione S; Ceseracciu L; Aiello M; Coluccino L; Ferrazzo F; Giannoni P; Quarto R
    Biotechnol Bioeng; 2014 Oct; 111(10):2107-19. PubMed ID: 25073412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies.
    Rodríguez-Pérez E; Lloret Compañ A; Monleón Pradas M; Martínez-Ramos C
    Macromol Biosci; 2016 Aug; 16(8):1147-57. PubMed ID: 27072058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
    Kim SH; Kim SH; Jung Y
    J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topologically controlled hyaluronan-based gel coatings of hydrophobic grid-like scaffolds to modulate drug delivery.
    Arnal-Pastor M; Pérez-Garnes M; Monleón Pradas M; Vallés Lluch A
    Colloids Surf B Biointerfaces; 2016 Apr; 140():412-420. PubMed ID: 26780254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.