These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
852 related articles for article (PubMed ID: 26838900)
21. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
22. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260 [TBL] [Abstract][Full Text] [Related]
23. Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold. Zheng X; Yang F; Wang S; Lu S; Zhang W; Liu S; Huang J; Wang A; Yin B; Ma N; Zhang L; Xu W; Guo Q J Mater Sci Mater Med; 2011 Mar; 22(3):693-704. PubMed ID: 21287238 [TBL] [Abstract][Full Text] [Related]
24. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle. Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787 [TBL] [Abstract][Full Text] [Related]
25. Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Kim DK; In Kim J; Sim BR; Khang G Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():571-578. PubMed ID: 28576023 [TBL] [Abstract][Full Text] [Related]
26. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
27. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
28. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Liu H; Li X; Niu X; Zhou G; Li P; Fan Y Biomacromolecules; 2011 Aug; 12(8):2914-24. PubMed ID: 21714569 [TBL] [Abstract][Full Text] [Related]
29. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
31. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
32. Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Farokhi M; Mottaghitalab F; Shokrgozar MA; Ai J; Hadjati J; Azami M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():401-10. PubMed ID: 24411394 [TBL] [Abstract][Full Text] [Related]
33. Tanshinone IIA Delivery Silk Fibroin Scaffolds Significantly Enhance Articular Cartilage Defect Repairing Chen W; Xu Y; Li H; Dai Y; Zhou G; Zhou Z; Xia H; Liu H ACS Appl Mater Interfaces; 2020 May; 12(19):21470-21480. PubMed ID: 32314911 [TBL] [Abstract][Full Text] [Related]
34. Gelatin-poly(lactic-co-glycolic acid) scaffolds with oriented pore channel architecture - From in vitro to in vivo testing. Thiem A; Bagheri M; Große-Siestrup C; Zehbe R Mater Sci Eng C Mater Biol Appl; 2016 May; 62():585-95. PubMed ID: 26952462 [TBL] [Abstract][Full Text] [Related]
35. Weft-knitted silk-poly(lactide-co-glycolide) mesh scaffold combined with collagen matrix and seeded with mesenchymal stem cells for rabbit Achilles tendon repair. Zhang W; Yang Y; Zhang K; Li Y; Fang G Connect Tissue Res; 2015 Feb; 56(1):25-34. PubMed ID: 25333819 [TBL] [Abstract][Full Text] [Related]
36. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. Wang X; Wenk E; Zhang X; Meinel L; Vunjak-Novakovic G; Kaplan DL J Control Release; 2009 Mar; 134(2):81-90. PubMed ID: 19071168 [TBL] [Abstract][Full Text] [Related]
37. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering. Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
39. Biomimetic cartilage scaffold with orientated porous structure of two factors for cartilage repair of knee osteoarthritis. Wang J; Wang Y; Sun X; Liu D; Huang C; Wu J; Yang C; Zhang Q Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1710-1721. PubMed ID: 31062604 [TBL] [Abstract][Full Text] [Related]
40. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering. Abdul Rahman R; Mohamad Sukri N; Md Nazir N; Ahmad Radzi MA; Zulkifly AH; Che Ahmad A; Hashi AA; Abdul Rahman S; Sha'ban M Tissue Cell; 2015 Aug; 47(4):420-30. PubMed ID: 26100682 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]