BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26838916)

  • 21. Poly(ethylene glycol)-carboxymethyl chitosan-based pH-responsive hydrogels: photo-induced synthesis, characterization, swelling, and in vitro evaluation as potential drug carriers.
    El-Sherbiny IM; Smyth HD
    Carbohydr Res; 2010 Sep; 345(14):2004-12. PubMed ID: 20708174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable hydrophobic-hydrophilic hybrid hydrogels: swelling behavior and controlled drug release.
    Wu DQ; Chu CC
    J Biomater Sci Polym Ed; 2008; 19(4):411-29. PubMed ID: 18318955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterizing Drug Release from Nonfouling Polyampholyte Hydrogels.
    Barcellona MN; Johnson N; Bernards MT
    Langmuir; 2015 Dec; 31(49):13402-9. PubMed ID: 26606238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules.
    Zhang Y; Tao L; Li S; Wei Y
    Biomacromolecules; 2011 Aug; 12(8):2894-901. PubMed ID: 21699141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency.
    Xu S; Wang W; Li X; Liu J; Dong A; Deng L
    Eur J Pharm Sci; 2014 Oct; 62():267-73. PubMed ID: 24931190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel.
    Singh NK; Nguyen QV; Kim BS; Lee DS
    Nanoscale; 2015 Feb; 7(7):3043-54. PubMed ID: 25603888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The properties of mesoporous silica nanoparticles functionalized with different PEG-chain length via the disulfide bond linker and drug release in glutathione medium.
    Xie Z; Gong H; Liu M; Zhu H; Sun H
    J Biomater Sci Polym Ed; 2016; 27(1):55-68. PubMed ID: 26540096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab.
    Kirchhof S; Gregoritza M; Messmann V; Hammer N; Goepferich AM; Brandl FP
    Eur J Pharm Biopharm; 2015 Oct; 96():217-25. PubMed ID: 26253504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling methacryloyl substitution of chondroitin sulfate: injectable hydrogels with tunable long-term drug release profiles.
    Ornell KJ; Lozada D; Phan NV; Coburn JM
    J Mater Chem B; 2019 Apr; 7(13):2151-2161. PubMed ID: 32073574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles.
    Lu C; Mikhail AS; Wang X; Brook MA; Allen C
    J Biomater Sci Polym Ed; 2012; 23(8):1069-90. PubMed ID: 21619728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior.
    Lin G; Cosimbescu L; Karin NJ; Tarasevich BJ
    Biomed Mater; 2012 Apr; 7(2):024107. PubMed ID: 22456931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-arm PEG/silica hydrogel for sustained ocular drug delivery.
    Lu C; Zahedi P; Forman A; Allen C
    J Pharm Sci; 2014 Jan; 103(1):216-26. PubMed ID: 24285503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hydrophobicity and mat thickness on release from hydrogel-electrospun fiber mat composites.
    Han N; Bradley PA; Johnson J; Parikh KS; Hissong A; Calhoun MA; Lannutti JJ; Winter JO
    J Biomater Sci Polym Ed; 2013; 24(17):2018-30. PubMed ID: 23905840
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photo-induced programmable degradation of carboxymethyl chitosan-based hydrogels.
    Wei Q; Bai J; Wang H; Ma G; Li X; Zhang W; Hu Z
    Carbohydr Polym; 2021 Mar; 256():117609. PubMed ID: 33483085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery.
    Singh NK; Lee DS
    J Control Release; 2014 Nov; 193():214-27. PubMed ID: 24815421
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties.
    Elias PZ; Liu GW; Wei H; Jensen MC; Horner PJ; Pun SH
    J Control Release; 2015 Jun; 208():76-84. PubMed ID: 25747144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics.
    Puranik AS; Pao LP; White VM; Peppas NA
    Eur J Pharm Biopharm; 2016 Nov; 108():196-213. PubMed ID: 27634646
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual drug release from hydrogels covalently containing polymeric micelles that possess different drug release properties.
    Murata M; Uchida Y; Takami T; Ito T; Anzai R; Sonotaki S; Murakami Y
    Colloids Surf B Biointerfaces; 2017 May; 153():19-26. PubMed ID: 28208061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled Release of RNAi Molecules by Tunable Supramolecular Hydrogel Carriers.
    Bakker MH; van Rooij E; Dankers PYW
    Chem Asian J; 2018 Nov; 13(22):3501-3508. PubMed ID: 29858562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin.
    Lin N; Dufresne A
    Biomacromolecules; 2013 Mar; 14(3):871-80. PubMed ID: 23347071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.