These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 26839039)
1. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Özyurt H; Luna C; Estévez M Food Funct; 2016 Mar; 7(3):1390-400. PubMed ID: 26839039 [TBL] [Abstract][Full Text] [Related]
2. Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin. Minoda K; Ichikawa T; Katsumata T; Onobori K; Mori T; Suzuki Y; Ishii T; Nakayama T J Nutr Sci Vitaminol (Tokyo); 2010; 56(5):331-4. PubMed ID: 21228505 [TBL] [Abstract][Full Text] [Related]
3. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin. Ishii T; Mori T; Ichikawa T; Kaku M; Kusaka K; Uekusa Y; Akagawa M; Aihara Y; Furuta T; Wakimoto T; Kan T; Nakayama T Bioorg Med Chem; 2010 Jul; 18(14):4892-6. PubMed ID: 20598557 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of non-covalent interactions between serum albumin and green tea catechins by affinity capillary electrophoresis. Zinellu A; Sotgia S; Scanu B; Pisanu E; Giordo R; Cossu A; Posadino AM; Carru C; Pintus G J Chromatogr A; 2014 Nov; 1367():167-71. PubMed ID: 25294295 [TBL] [Abstract][Full Text] [Related]
5. Human Serum Albumin Increases the Stability of Green Tea Catechins in Aqueous Physiological Conditions. Zinellu A; Sotgia S; Scanu B; Forteschi M; Giordo R; Cossu A; Posadino AM; Carru C; Pintus G PLoS One; 2015; 10(7):e0134690. PubMed ID: 26230943 [TBL] [Abstract][Full Text] [Related]
6. In vitro protection of reactive oxygen species-induced degradation of lipids, proteins and 2-deoxyribose by tea catechins. Raza H; John A Food Chem Toxicol; 2007 Oct; 45(10):1814-20. PubMed ID: 17490800 [TBL] [Abstract][Full Text] [Related]
7. Covalent binding of tea catechins to protein thiols: the relationship between stability and electrophilic reactivity. Mori T; Ishii T; Akagawa M; Nakamura Y; Nakayama T Biosci Biotechnol Biochem; 2010; 74(12):2451-6. PubMed ID: 21150116 [TBL] [Abstract][Full Text] [Related]
8. Absorption and pharmacokinetics of green tea catechins in beagles. Mata-Bilbao Mde L; Andrés-Lacueva C; Roura E; Jáuregui O; Escribano E; Torre C; Lamuela-Raventós RM Br J Nutr; 2008 Sep; 100(3):496-502. PubMed ID: 18205995 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory effect of tea catechins on collagenase activity. Makimura M; Hirasawa M; Kobayashi K; Indo J; Sakanaka S; Taguchi T; Otake S J Periodontol; 1993 Jul; 64(7):630-6. PubMed ID: 8396176 [TBL] [Abstract][Full Text] [Related]
10. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Suzuki-Sugihara N; Kishimoto Y; Saita E; Taguchi C; Kobayashi M; Ichitani M; Ukawa Y; Sagesaka YM; Suzuki E; Kondo K Nutr Res; 2016 Jan; 36(1):16-23. PubMed ID: 26773777 [TBL] [Abstract][Full Text] [Related]
11. Effects of green tea catechins on gramicidin channel function and inferred changes in bilayer properties. Ingólfsson HI; Koeppe RE; Andersen OS FEBS Lett; 2011 Oct; 585(19):3101-5. PubMed ID: 21896274 [TBL] [Abstract][Full Text] [Related]
12. Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Rizvi SI; Zaid MA; Anis R; Mishra N Clin Exp Pharmacol Physiol; 2005; 32(1-2):70-5. PubMed ID: 15730438 [TBL] [Abstract][Full Text] [Related]
13. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Severino JF; Goodman BA; Kay CW; Stolze K; Tunega D; Reichenauer TG; Pirker KF Free Radic Biol Med; 2009 Apr; 46(8):1076-88. PubMed ID: 19439236 [TBL] [Abstract][Full Text] [Related]
14. The comparison of effect of catechins and green tea extract on oxidative modification of LDL in vitro. Ostrowska J; Skrzydlewska E Adv Med Sci; 2006; 51():298-303. PubMed ID: 17357329 [TBL] [Abstract][Full Text] [Related]
15. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Azam S; Hadi N; Khan NU; Hadi SM Toxicol In Vitro; 2004 Oct; 18(5):555-61. PubMed ID: 15251172 [TBL] [Abstract][Full Text] [Related]
16. Condensed catechins and their potential health-benefits. Matsui T Eur J Pharmacol; 2015 Oct; 765():495-502. PubMed ID: 26386288 [TBL] [Abstract][Full Text] [Related]
17. Identification of oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin with H(2)O(2). Zhu N; Huang TC; Yu Y; LaVoie EJ; Yang CS; Ho CT J Agric Food Chem; 2000 Apr; 48(4):979-81. PubMed ID: 10775337 [TBL] [Abstract][Full Text] [Related]
18. Stability of green tea catechins in commercial tea leaves during storage for 6 months. Friedman M; Levin CE; Lee SU; Kozukue N J Food Sci; 2009 Mar; 74(2):H47-51. PubMed ID: 19323750 [TBL] [Abstract][Full Text] [Related]
19. The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products. Lee Y; Lin Z; Du G; Deng Z; Yang H; Bai W J Sci Food Agric; 2015 Oct; 95(13):2686-92. PubMed ID: 25407933 [TBL] [Abstract][Full Text] [Related]
20. Determination of green tea catechins in human plasma using liquid chromatography-electrospray ionization mass spectrometry. Masukawa Y; Matsui Y; Shimizu N; Kondou N; Endou H; Kuzukawa M; Hase T J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Apr; 834(1-2):26-34. PubMed ID: 16513433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]