BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26839187)

  • 21. Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.
    Chen Y
    Methods Mol Biol; 2016; 1410():23-37. PubMed ID: 26867736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome.
    Tatham MH; Cole C; Scullion P; Wilkie R; Westwood NJ; Stark LA; Hay RT
    Mol Cell Proteomics; 2017 Feb; 16(2):310-326. PubMed ID: 27913581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the
    Weinert BT; Satpathy S; Hansen BK; Lyon D; Jensen LJ; Choudhary C
    Mol Cell Proteomics; 2017 May; 16(5):759-769. PubMed ID: 28254776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods for characterizing protein acetylation during viral infection.
    Murray LA; Combs AN; Rekapalli P; Cristea IM
    Methods Enzymol; 2019; 626():587-620. PubMed ID: 31606092
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stoichiometry of site-specific lysine acetylation in an entire proteome.
    Baeza J; Dowell JA; Smallegan MJ; Fan J; Amador-Noguez D; Khan Z; Denu JM
    J Biol Chem; 2014 Aug; 289(31):21326-38. PubMed ID: 24917678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific mapping and time-resolved monitoring of lysine methylation by high-resolution NMR spectroscopy.
    Theillet FX; Liokatis S; Jost JO; Bekei B; Rose HM; Binolfi A; Schwarzer D; Selenko P
    J Am Chem Soc; 2012 May; 134(18):7616-9. PubMed ID: 22519908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating Histone Acetylation Stoichiometry and Turnover Rate.
    Fan J; Baeza J; Denu JM
    Methods Enzymol; 2016; 574():125-148. PubMed ID: 27423860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites.
    Zheng Y; Thomas PM; Kelleher NL
    Nat Commun; 2013; 4():2203. PubMed ID: 23892279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lysine-specific acetylated proteome from the archaeon Thermococcus gammatolerans reveals the presence of acetylated histones.
    Alpha-Bazin B; Gorlas A; Lagorce A; Joulié D; Boyer JB; Dutertre M; Gaillard JC; Lopes A; Zivanovic Y; Dedieu A; Confalonieri F; Armengaud J
    J Proteomics; 2021 Feb; 232():104044. PubMed ID: 33161166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FASIL-MS: An Integrated Proteomic and Bioinformatic Workflow To Universally Quantitate In Vivo-Acetylated Positional Isomers.
    Vitko D; Májek P; Schirghuber E; Kubicek S; Bennett KL
    J Proteome Res; 2016 Aug; 15(8):2579-94. PubMed ID: 27302567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotopic Labeling and Quantitative Proteomics of Acetylation on Histones and Beyond.
    Lund PJ; Kori Y; Zhao X; Sidoli S; Yuan ZF; Garcia BA
    Methods Mol Biol; 2019; 1977():43-70. PubMed ID: 30980322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SILAC-based proteomic analysis to dissect the "histone modification signature" of human breast cancer cells.
    Cuomo A; Moretti S; Minucci S; Bonaldi T
    Amino Acids; 2011 Jul; 41(2):387-99. PubMed ID: 20617350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions.
    Li X; Foley EA; Molloy KR; Li Y; Chait BT; Kapoor TM
    J Am Chem Soc; 2012 Feb; 134(4):1982-5. PubMed ID: 22239320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functions and mechanisms of non-histone protein acetylation.
    Narita T; Weinert BT; Choudhary C
    Nat Rev Mol Cell Biol; 2019 Mar; 20(3):156-174. PubMed ID: 30467427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method to determine lysine acetylation stoichiometries.
    Nakayasu ES; Wu S; Sydor MA; Shukla AK; Weitz KK; Moore RJ; Hixson KK; Kim JS; Petyuk VA; Monroe ME; Pasa-Tolic L; Qian WJ; Smith RD; Adkins JN; Ansong C
    Int J Proteomics; 2014; 2014():730725. PubMed ID: 25143833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Site-specific reactivity of nonenzymatic lysine acetylation.
    Baeza J; Smallegan MJ; Denu JM
    ACS Chem Biol; 2015 Jan; 10(1):122-8. PubMed ID: 25555129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive profiling of histone modifications using a label-free approach and its applications in determining structure-function relationships.
    Drogaris P; Wurtele H; Masumoto H; Verreault A; Thibault P
    Anal Chem; 2008 Sep; 80(17):6698-707. PubMed ID: 18671409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation.
    Weinert BT; Wagner SA; Horn H; Henriksen P; Liu WR; Olsen JV; Jensen LJ; Choudhary C
    Sci Signal; 2011 Jul; 4(183):ra48. PubMed ID: 21791702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetylome with structural mapping reveals the significance of lysine acetylation in Thermus thermophilus.
    Okanishi H; Kim K; Masui R; Kuramitsu S
    J Proteome Res; 2013 Sep; 12(9):3952-68. PubMed ID: 23901841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis.
    Xie L; Wang X; Zeng J; Zhou M; Duan X; Li Q; Zhang Z; Luo H; Pang L; Li W; Liao G; Yu X; Li Y; Huang H; Xie J
    Int J Biochem Cell Biol; 2015 Feb; 59():193-202. PubMed ID: 25456444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.