BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 26839468)

  • 1. Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
    Chun SY; Soker S; Jang YJ; Kwon TG; Yoo ES
    J Korean Med Sci; 2016 Feb; 31(2):171-7. PubMed ID: 26839468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro.
    Chen L; He DM; Zhang Y
    Cell Mol Biol Lett; 2009; 14(3):528-36. PubMed ID: 19412574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal factors SDF1α, sFRP1, and VEGFD induce dopaminergic neuron differentiation of human pluripotent stem cells.
    Schwartz CM; Tavakoli T; Jamias C; Park SS; Maudsley S; Martin B; Phillips TM; Yao PJ; Itoh K; Ma W; Rao MS; Arenas E; Mattson MP
    J Neurosci Res; 2012 Jul; 90(7):1367-81. PubMed ID: 22535492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid differentiation of human dental pulp stem cells to neuron-like cells by high K
    Kogo Y; Seto C; Totani Y; Mochizuki M; Nakahara T; Oka K; Yoshioka T; Ito E
    Biophys Physicobiol; 2020; 17():132-139. PubMed ID: 33240740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of neural stem cells from human olfactory mucosa into dopaminergic neuron-like cells.
    Ertem T; Uysal O
    IUBMB Life; 2024 Apr; ():. PubMed ID: 38662920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopaminergic differentiation of schizophrenia hiPSCs.
    Hartley BJ; Tran N; Ladran I; Reggio K; Brennand KJ
    Mol Psychiatry; 2015 May; 20(5):549-50. PubMed ID: 25623947
    [No Abstract]   [Full Text] [Related]  

  • 7. An additional human chromosome 21 causes suppression of neural fate of pluripotent mouse embryonic stem cells in a teratoma model.
    Mensah A; Mulligan C; Linehan J; Ruf S; O'Doherty A; Grygalewicz B; Shipley J; Groet J; Tybulewicz V; Fisher E; Brandner S; Nizetic D
    BMC Dev Biol; 2007 Nov; 7():131. PubMed ID: 18047653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human endometrial stem cells as a new source for programming to neural cells.
    Mobarakeh ZT; Ai J; Yazdani F; Sorkhabadi SM; Ghanbari Z; Javidan AN; Mortazavi-Tabatabaei SA; Massumi M; Barough SE
    Cell Biol Int Rep (2010); 2012 Apr; 19(1):e00015. PubMed ID: 23124318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Chloride can Induce Differentiation of Human Immortalized RenVm Cells into Dopaminergic Neurons.
    Soleimani M; Ghasemi N
    Avicenna J Med Biotechnol; 2017; 9(4):176-180. PubMed ID: 29090066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Our Understanding of Cell Types, Differentiation, and Disease Through Enhancers: An Interview with César Daniel Meléndez-Ramírez, MS.
    Abu-Shamma R
    Yale J Biol Med; 2023 Dec; 96(4):569-572. PubMed ID: 38161574
    [No Abstract]   [Full Text] [Related]  

  • 11. Dopaminergic-primed fetal liver mesenchymal stromal-like cells can reverse parkinsonian symptoms in 6-hydroxydopamine-lesioned mice.
    Kumar A; Dudhal S; Sundari T A; Sunkara M; Usman H; Varshney A; Mukhopadhyay A
    Cytotherapy; 2016 Mar; 18(3):307-19. PubMed ID: 26857226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Progress of Induced Pluripotent Stem Cells as Models of Parkinson's Disease.
    Kang JF; Tang BS; Guo JF
    Stem Cells Int; 2016; 2016():4126214. PubMed ID: 26880962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Therapy for Parkinson's Disease.
    Morizane A; Takahashi J
    Neurol Med Chir (Tokyo); 2016; 56(3):102-9. PubMed ID: 26912295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders.
    Smith DK; He M; Zhang CL; Zheng JC
    Prog Neurobiol; 2017 Oct; 157():212-229. PubMed ID: 26844759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dental pulp stem cells for treating neurodegenerative diseases.
    Shamir C; Venugopal C; Dhanushkodi A
    Neural Regen Res; 2015 Dec; 10(12):1910-1. PubMed ID: 26889163
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy.
    Ren H; Sang Y; Zhang F; Liu Z; Qi N; Chen Y
    Stem Cells Int; 2016; 2016():3516574. PubMed ID: 26880954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunotolerant Properties of Mesenchymal Stem Cells: Updated Review.
    Faiella W; Atoui R
    Stem Cells Int; 2016; 2016():1859567. PubMed ID: 26839557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the Therapeutics Effects of Oral Cavity Derived Stem Cells on Neurodegenerative Diseases: A Systematic Review.
    Uzunoglu-Ozyurek E; Önal G; Dökmeci S
    Basic Clin Neurosci; 2023; 14(5):565-584. PubMed ID: 38628839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease Modifying Strategies in Multiple Sclerosis: New Rays of Hope to Combat Disability?
    Bellanca CM; Augello E; Mariottini A; Bonaventura G; La Cognata V; Di Benedetto G; Cantone AF; Attaguile G; Di Mauro R; Cantarella G; Massacesi L; Bernardini R
    Curr Neuropharmacol; 2024; 22(8):1286-1326. PubMed ID: 38275058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and comparisons of gene expression changes in patient- derived neurons from ROHHAD, CCHS, and PWS.
    Victor AK; Hedgecock T; Donaldson M; Johnson D; Rand CM; Weese-Mayer DE; Reiter LT
    Front Pediatr; 2023; 11():1090084. PubMed ID: 37234859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.