BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26839526)

  • 1. Efficient one-pot synthesis, molecular docking and in silico ADME prediction of bis-(4-hydroxycoumarin-3-yl) methane derivatives as antileishmanial agents.
    Zaheer Z; Khan FA; Sangshetti JN; Patil RH
    EXCLI J; 2015; 14():935-47. PubMed ID: 26839526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antileishmanial evaluation of clubbed bis(indolyl)-pyridine derivatives: One-pot synthesis, in vitro biological evaluations and in silico ADME prediction.
    Khan FA; Zaheer Z; Sangshetti JN; Patil RH; Farooqui M
    Bioorg Med Chem Lett; 2017 Feb; 27(3):567-573. PubMed ID: 28003139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antileishmanial activity of novel indolyl-coumarin hybrids: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction.
    Sangshetti JN; Kalam Khan FA; Kulkarni AA; Patil RH; Pachpinde AM; Lohar KS; Shinde DB
    Bioorg Med Chem Lett; 2016 Feb; 26(3):829-835. PubMed ID: 26778149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-assisted synthesis of novel 5-substituted benzylidene amino-2-butyl benzofuran-3-yl-4-methoxyphenyl methanones as antileishmanial and antioxidant agents.
    Patil SR; Bollikonda S; Patil RH; Sangshetti JN; Bobade AS; Asrondkar A; Reddy PP; Shinde DB
    Bioorg Med Chem Lett; 2018 Feb; 28(3):482-487. PubMed ID: 29258770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antileishmanial potential of fused 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiols: Synthesis, biological evaluations and computational studies.
    Patil SR; Asrondkar A; Patil V; Sangshetti JN; Kalam Khan FA; Damale MG; Patil RH; Bobade AS; Shinde DB
    Bioorg Med Chem Lett; 2017 Aug; 27(16):3845-3850. PubMed ID: 28693910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, antileishmanial activity and docking study of N'-substitutedbenzylidene-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetohydrazides.
    Sangshetti JN; Shaikh RI; Khan FA; Patil RH; Marathe SD; Gade WN; Shinde DB
    Bioorg Med Chem Lett; 2014 Mar; 24(6):1605-10. PubMed ID: 24513045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Thiocarbohydrazones and Evaluation of their in vitro Antileishmanial Activity.
    Muhammad MT; Ghouri N; Khan KM; Arshia ; Choudhary MI; Perveen S
    Med Chem; 2018; 14(7):725-732. PubMed ID: 29332596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and antileishmanial evaluation of some 2,3-disubstituted-4(3H)-quinazolinone derivatives.
    Birhan YS; Bekhit AA; Hymete A
    Org Med Chem Lett; 2014 Dec; 4(1):10. PubMed ID: 26548988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis and biological evaluation of aryl pyrimidine derivatives as potential leishmanicidal agents.
    Suryawanshi SN; Kumar S; Shivahare R; Pandey S; Tiwari A; Gupta S
    Bioorg Med Chem Lett; 2013 Sep; 23(18):5235-8. PubMed ID: 23910597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The triterpenoid fraction from Trichosanthes dioica root exhibits in vitro antileishmanial effect against Leishmania donovani promastigotes.
    Bhattacharya S; Biswas M; Haldar PK
    Pharmacognosy Res; 2013 Apr; 5(2):109-12. PubMed ID: 23798885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.
    Waseem D; Butt AF; Haq IU; Bhatti MH; Khan GM
    Daru; 2017 Apr; 25(1):8. PubMed ID: 28376844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, molecular modeling and biological screening of some pyrazole derivatives as antileishmanial agents.
    Bekhit AA; Saudi MN; Hassan AM; Fahmy SM; Ibrahim TM; Ghareeb D; El-Seidy AM; Al-Qallaf SM; Habib HJ; Bekhit AEA
    Future Med Chem; 2018 Oct; 10(19):2325-2344. PubMed ID: 30215271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species.
    Nieto-Meneses R; Castillo R; Hernández-Campos A; Maldonado-Rangel A; Matius-Ruiz JB; Trejo-Soto PJ; Nogueda-Torres B; Dea-Ayuela MA; Bolás-Fernández F; Méndez-Cuesta C; Yépez-Mulia L
    Exp Parasitol; 2018 Jan; 184():82-89. PubMed ID: 29191699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure based medicinal chemistry-driven strategy to design substituted dihydropyrimidines as potential antileishmanial agents.
    Rashid U; Sultana R; Shaheen N; Hassan SF; Yaqoob F; Ahmad MJ; Iftikhar F; Sultana N; Asghar S; Yasinzai M; Ansari FL; Qureshi NA
    Eur J Med Chem; 2016 Jun; 115():230-44. PubMed ID: 27017551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and evaluation of a cedrol-loaded nanostructured lipid carrier system for in vitro and in vivo susceptibilities of wild and drug resistant Leishmania donovani amastigotes.
    Kar N; Chakraborty S; De AK; Ghosh S; Bera T
    Eur J Pharm Sci; 2017 Jun; 104():196-211. PubMed ID: 28400285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase.
    Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK
    J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the antileishmanial potency, toxicity and phytochemical constituents of methanol bark extract of Sterculia villosa.
    Das A; Das MC; Das N; Bhattacharjee S
    Pharm Biol; 2017 Dec; 55(1):998-1009. PubMed ID: 28173714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthyl bearing 1,3,4-thiadiazoleacetamides targeting the parasitic folate pathway as anti-infectious agents:
    Pal K; Lala S; Agarwal P; Patel TS; Legac J; Rahman MA; Ahmedi S; Shahid N; Singh S; Kumari K; Madhav H; Sen A; Manzoor N; Dixit BC; Van Zyl R; Rosenthal PJ; Hoda N
    RSC Med Chem; 2023 Dec; 14(12):2768-2781. PubMed ID: 38107179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, antileishmanial activity and molecular modeling of new 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives.
    Mohammadi-Ghalehbin B; Shiran JA; Gholizadeh N; Razzaghi-Asl N
    Mol Divers; 2023 Aug; 27(4):1531-1545. PubMed ID: 36001225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential antileishmanial 1,3-disubstituted-4-hydroxy-6-methylpyridin-2(1H)-ones, in vitro metabolic stability, cytotoxicity and molecular modeling studies.
    Borkar MR; Martis EAF; Nandan S; Patil RH; Shelar A; Iyer KR; Raikuvar K; Desle D; Coutinho EC
    Chem Biol Interact; 2022 Jan; 351():109758. PubMed ID: 34826397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.