These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26839594)

  • 1. r2VIM: A new variable selection method for random forests in genome-wide association studies.
    Szymczak S; Holzinger E; Dasgupta A; Malley JD; Molloy AM; Mills JL; Brody LC; Stambolian D; Bailey-Wilson JE
    BioData Min; 2016; 9():7. PubMed ID: 26839594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable selection method for the identification of epistatic models.
    Holzinger ER; Szymczak S; Dasgupta A; Malley J; Li Q; Bailey-Wilson JE
    Pac Symp Biocomput; 2015; 20():195-206. PubMed ID: 25592581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of parametric and machine methods for variable selection in simulated Genetic Analysis Workshop 19 data.
    Holzinger ER; Szymczak S; Malley J; Pugh EW; Ling H; Griffith S; Zhang P; Li Q; Cropp CD; Bailey-Wilson JE
    BMC Proc; 2016; 10(Suppl 7):147-152. PubMed ID: 27980627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of forest methods for time-to-event data: variable selection and predictive performance.
    Liu Y; Zhou S; Wei H; An S
    BMC Med Res Methodol; 2021 Sep; 21(1):193. PubMed ID: 34563138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximal conditional chi-square importance in random forests.
    Wang M; Chen X; Zhang H
    Bioinformatics; 2010 Mar; 26(6):831-7. PubMed ID: 20130032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient unified model for genome-wide association studies and genomic selection.
    Li H; Su G; Jiang L; Bao Z
    Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The behaviour of random forest permutation-based variable importance measures under predictor correlation.
    Nicodemus KK; Malley JD; Strobl C; Ziegler A
    BMC Bioinformatics; 2010 Feb; 11():110. PubMed ID: 20187966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shared genetic factors for age at natural menopause in Iranian and European women.
    Rahmani M; Earp MA; Ramezani Tehrani F; Ataee M; Wu J; Treml M; Nudischer R; P-Behnami S; ; Perry JR; Murabito JM; Azizi F; Brooks-Wilson A
    Hum Reprod; 2013 Jul; 28(7):1987-94. PubMed ID: 23592221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach.
    Dunne R; Reguant R; Ramarao-Milne P; Szul P; Sng LMF; Lundberg M; Twine NA; Bauer DC
    Comput Struct Biotechnol J; 2023; 21():4354-4360. PubMed ID: 37711185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNP interaction detection with Random Forests in high-dimensional genetic data.
    Winham SJ; Colby CL; Freimuth RR; Wang X; de Andrade M; Huebner M; Biernacka JM
    BMC Bioinformatics; 2012 Jul; 13():164. PubMed ID: 22793366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome Wide Association Study to predict severe asthma exacerbations in children using random forests classifiers.
    Xu M; Tantisira KG; Wu A; Litonjua AA; Chu JH; Himes BE; Damask A; Weiss ST
    BMC Med Genet; 2011 Jun; 12():90. PubMed ID: 21718536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of variable selection methods for random forests and omics data sets.
    Degenhardt F; Seifert S; Szymczak S
    Brief Bioinform; 2019 Mar; 20(2):492-503. PubMed ID: 29045534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping.
    Liu F; Schmidt RH; Reif JC; Jiang Y
    G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.
    Winham SJ; Jenkins GD; Biernacka JM
    Genet Epidemiol; 2016 Feb; 40(2):123-32. PubMed ID: 26639183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.
    Wang YT; Sung PY; Lin PL; Yu YW; Chung RH
    BMC Genomics; 2015 May; 16(1):381. PubMed ID: 25975968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.