These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26839597)

  • 1. Fragmentation trees reloaded.
    Böcker S; Dührkop K
    J Cheminform; 2016; 8():5. PubMed ID: 26839597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated pipeline for de novo metabolite identification using mass-spectrometry-based metabolomics.
    Peironcely JE; Rojas-Chertó M; Tas A; Vreeken R; Reijmers T; Coulier L; Hankemeier T
    Anal Chem; 2013 Apr; 85(7):3576-83. PubMed ID: 23368721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying the unknowns by aligning fragmentation trees.
    Rasche F; Scheubert K; Hufsky F; Zichner T; Kai M; Svatoš A; Böcker S
    Anal Chem; 2012 Apr; 84(7):3417-26. PubMed ID: 22390817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics.
    Vaniya A; Fiehn O
    Trends Analyt Chem; 2015 Jun; 69():52-61. PubMed ID: 26213431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo analysis of electron impact mass spectra using fragmentation trees.
    Hufsky F; Rempt M; Rasche F; Pohnert G; Böcker S
    Anal Chim Acta; 2012 Aug; 739():67-76. PubMed ID: 22819051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing fragmentation trees from tandem mass spectrometry data.
    Rasche F; Svatos A; Maddula RK; Böttcher C; Böcker S
    Anal Chem; 2011 Feb; 83(4):1243-51. PubMed ID: 21182243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolite identification using automated comparison of high-resolution multistage mass spectral trees.
    Rojas-Cherto M; Peironcely JE; Kasper PT; van der Hooft JJ; de Vos RC; Vreeken R; Hankemeier T; Reijmers T
    Anal Chem; 2012 Jul; 84(13):5524-34. PubMed ID: 22612383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching molecular structure databases with tandem mass spectra using CSI:FingerID.
    Dührkop K; Shen H; Meusel M; Rousu J; Böcker S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12580-5. PubMed ID: 26392543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De Novo Molecular Formula Annotation and Structure Elucidation Using SIRIUS 4.
    Ludwig M; Fleischauer M; Dührkop K; Hoffmann MA; Böcker S
    Methods Mol Biol; 2020; 2104():185-207. PubMed ID: 31953819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards de novo identification of metabolites by analyzing tandem mass spectra.
    Böcker S; Rasche F
    Bioinformatics; 2008 Aug; 24(16):i49-i55. PubMed ID: 18689839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.
    Cao M; Fraser K; Rasmussen S
    Metabolites; 2013 Oct; 3(4):1036-50. PubMed ID: 24958264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing fragmentation trees from metabolite multiple mass spectrometry data.
    Scheubert K; Hufsky F; Rasche F; Böcker S
    J Comput Biol; 2011 Nov; 18(11):1383-97. PubMed ID: 22035289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite identification through multiple kernel learning on fragmentation trees.
    Shen H; Dührkop K; Böcker S; Rousu J
    Bioinformatics; 2014 Jun; 30(12):i157-64. PubMed ID: 24931979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational mass spectrometry for small molecules.
    Scheubert K; Hufsky F; Böcker S
    J Cheminform; 2013 Mar; 5(1):12. PubMed ID: 23453222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topic modeling for untargeted substructure exploration in metabolomics.
    van der Hooft JJ; Wandy J; Barrett MP; Burgess KE; Rogers S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13738-13743. PubMed ID: 27856765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast alignment of fragmentation trees.
    Hufsky F; Dührkop K; Rasche F; Chimani M; Böcker S
    Bioinformatics; 2012 Jun; 28(12):i265-73. PubMed ID: 22689771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Formula Identification Using Isotope Pattern Analysis and Calculation of Fragmentation Trees.
    Dührkop K; Hufsky F; Böcker S
    Mass Spectrom (Tokyo); 2014; 3(Spec Iss 2):S0037. PubMed ID: 26819880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining the parent and associated fragment formulae in mass spectrometry via the parent subformula graph.
    Li S; Bohman B; Flematti GR; Jayatilaka D
    J Cheminform; 2023 Nov; 15(1):104. PubMed ID: 37936244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra.
    Jaeger C; Méret M; Schmitt CA; Lisec J
    Rapid Commun Mass Spectrom; 2017 Aug; 31(15):1261-1266. PubMed ID: 28499062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Compound Characteristics Comparison (CCC) approach: a tool for improving confidence in natural compound identification.
    Narduzzi L; Stanstrup J; Mattivi F; Franceschi P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2018 Nov; 35(11):2145-2157. PubMed ID: 30352003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.