These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 26840291)
1. Self Organizing Map-Based Classification of Cathepsin k and S Inhibitors with Different Selectivity Profiles Using Different Structural Molecular Fingerprints: Design and Application for Discovery of Novel Hits. Ihmaid SK; Ahmed HE; Zayed MF; Abadleh MM Molecules; 2016 Jan; 21(2):175. PubMed ID: 26840291 [TBL] [Abstract][Full Text] [Related]
2. Design of potent, selective, and orally bioavailable inhibitors of cysteine protease cathepsin k. Tavares FX; Boncek V; Deaton DN; Hassell AM; Long ST; Miller AB; Payne AA; Miller LR; Shewchuk LM; Wells-Knecht K; Willard DH; Wright LL; Zhou HQ J Med Chem; 2004 Jan; 47(3):588-99. PubMed ID: 14736240 [TBL] [Abstract][Full Text] [Related]
3. Improved machine learning models for predicting selective compounds. Ning X; Walters M; Karypis G J Chem Inf Model; 2012 Jan; 52(1):38-50. PubMed ID: 22107358 [TBL] [Abstract][Full Text] [Related]
4. 3,4-disubstituted azetidinones as selective inhibitors of the cysteine protease cathepsin K. Exploring P3 elements for potency and selectivity. Setti EL; Davis D; Janc JW; Jeffery DA; Cheung H; Yu W Bioorg Med Chem Lett; 2005 Mar; 15(5):1529-34. PubMed ID: 15713422 [TBL] [Abstract][Full Text] [Related]
5. Azepanone-based inhibitors of human cathepsin S: optimization of selectivity via the P2 substituent. Kerns JK; Nie H; Bondinell W; Widdowson KL; Yamashita DS; Rahman A; Podolin PL; Carpenter DC; Jin Q; Riflade B; Dong X; Nevins N; Keller PM; Mitchell L; Tomaszek T Bioorg Med Chem Lett; 2011 Aug; 21(15):4409-15. PubMed ID: 21733692 [TBL] [Abstract][Full Text] [Related]
6. The consequences of lysosomotropism on the design of selective cathepsin K inhibitors. Black WC; Percival MD Chembiochem; 2006 Oct; 7(10):1525-35. PubMed ID: 16921579 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of proline analogues as potent and selective cathepsin S inhibitors. Kim M; Jeon J; Song J; Suh KH; Kim YH; Min KH; Lee KO Bioorg Med Chem Lett; 2013 Jun; 23(11):3140-4. PubMed ID: 23639544 [TBL] [Abstract][Full Text] [Related]
8. Design and synthesis of arylaminoethyl amides as noncovalent inhibitors of cathepsin S. Part 1. Liu H; Tully DC; Epple R; Bursulaya B; Li J; Harris JL; Williams JA; Russo R; Tumanut C; Roberts MJ; Alper PB; He Y; Karanewsky DS Bioorg Med Chem Lett; 2005 Nov; 15(22):4979-84. PubMed ID: 16183279 [TBL] [Abstract][Full Text] [Related]
9. Advances in the discovery of cathepsin K inhibitors on bone resorption. Lu J; Wang M; Wang Z; Fu Z; Lu A; Zhang G J Enzyme Inhib Med Chem; 2018 Dec; 33(1):890-904. PubMed ID: 29723068 [TBL] [Abstract][Full Text] [Related]
10. Methods for computer-aided chemical biology. Part 5: rationalizing the selectivity of cathepsin inhibitors on the basis of molecular fragments and topological feature distributions. Ahmed HE; Bajorath J Chem Biol Drug Des; 2009 Aug; 74(2):129-41. PubMed ID: 19549075 [TBL] [Abstract][Full Text] [Related]
11. Identification of selective, nonpeptidic nitrile inhibitors of cathepsin s using the substrate activity screening method. Patterson AW; Wood WJ; Hornsby M; Lesley S; Spraggon G; Ellman JA J Med Chem; 2006 Oct; 49(21):6298-307. PubMed ID: 17034136 [TBL] [Abstract][Full Text] [Related]
12. Potent and selective ketoamide-based inhibitors of cysteine protease, cathepsin K. Tavares FX; Deaton DN; Miller AB; Miller LR; Wright LL; Zhou HQ J Med Chem; 2004 Oct; 47(21):5049-56. PubMed ID: 15456248 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and kinetic characterization of hyperbolic inhibitors of human cathepsins K and S based on a succinimide scaffold. Goričan T; Ciber L; Petek N; Svete J; Novinec M Bioorg Chem; 2021 Oct; 115():105213. PubMed ID: 34364050 [TBL] [Abstract][Full Text] [Related]
14. Solid-phase parallel synthesis and SAR of 4-amidofuran-3-one inhibitors of cathepsin S: effect of sulfonamides P3 substituents on potency and selectivity. Ayesa S; Lindquist C; Agback T; Benkestock K; Classon B; Henderson I; Hewitt E; Jansson K; Kallin A; Sheppard D; Samuelsson B Bioorg Med Chem; 2009 Feb; 17(3):1307-24. PubMed ID: 19124252 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of the novel reversible and selective cathepsin X inhibitors. Fonović UP; Mitrović A; Knez D; Jakoš T; Pišlar A; Brus B; Doljak B; Stojan J; Žakelj S; Trontelj J; Gobec S; Kos J Sci Rep; 2017 Sep; 7(1):11459. PubMed ID: 28904354 [TBL] [Abstract][Full Text] [Related]
16. Potent and selective P2-P3 ketoamide inhibitors of cathepsin K with good pharmacokinetic properties via favorable P1', P1, and/or P3 substitutions. Barrett DG; Catalano JG; Deaton DN; Hassell AM; Long ST; Miller AB; Miller LR; Shewchuk LM; Wells-Knecht KJ; Willard DH; Wright LL Bioorg Med Chem Lett; 2004 Oct; 14(19):4897-902. PubMed ID: 15341947 [TBL] [Abstract][Full Text] [Related]
17. Keto-1,3,4-oxadiazoles as cathepsin K inhibitors. Palmer JT; Hirschbein BL; Cheung H; McCarter J; Janc JW; Yu ZW; Wesolowski G Bioorg Med Chem Lett; 2006 Jun; 16(11):2909-14. PubMed ID: 16546382 [TBL] [Abstract][Full Text] [Related]
18. Highly selective aza-nitrile inhibitors for cathepsin K, structural optimization and molecular modeling. Yuan XY; Fu DY; Ren XF; Fang X; Wang L; Zou S; Wu Y Org Biomol Chem; 2013 Sep; 11(35):5847-52. PubMed ID: 23900712 [TBL] [Abstract][Full Text] [Related]
19. Virtual screening of cathepsin k inhibitors using docking and pharmacophore models. Ravikumar M; Pavan S; Bairy S; Pramod AB; Sumakanth M; Kishore M; Sumithra T Chem Biol Drug Des; 2008 Jul; 72(1):79-90. PubMed ID: 18498326 [TBL] [Abstract][Full Text] [Related]
20. Structural optimization of azadipeptide nitriles strongly increases association rates and allows the development of selective cathepsin inhibitors. Frizler M; Lohr F; Furtmann N; Kläs J; Gütschow M J Med Chem; 2011 Jan; 54(1):396-400. PubMed ID: 21128614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]