These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26840359)

  • 21. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of axial growth by boron incorporation in GaAs nanowires grown by self-catalyzed molecular beam epitaxy.
    Lancaster S; Groiss H; Zederbauer T; Andrews AM; MacFarland D; Schrenk W; Strasser G; Detz H
    Nanotechnology; 2019 Feb; 30(6):065602. PubMed ID: 30523852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires.
    Dubrovskii VG; Hijazi H
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanoparticle Stability in Axial InAs-InP Nanowire Heterostructures with Atomically Sharp Interfaces.
    Zannier V; Rossi F; Dubrovskii VG; Ercolani D; Battiato S; Sorba L
    Nano Lett; 2018 Jan; 18(1):167-174. PubMed ID: 29186660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: ab initio simulations supporting center nucleation.
    André Y; Lekhal K; Hoggan P; Avit G; Cadiz F; Rowe A; Paget D; Petit E; Leroux C; Trassoudaine A; Ramdani MR; Monier G; Colas D; Ajib R; Castelluci D; Gil E
    J Chem Phys; 2014 May; 140(19):194706. PubMed ID: 24852556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.
    Wood AW; Collar K; Li J; Brown AS; Babcock SE
    Nanotechnology; 2016 Mar; 27(11):115704. PubMed ID: 26876494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires.
    Zheng C; Wong-Leung J; Gao Q; Tan HH; Jagadish C; Etheridge J
    Nano Lett; 2013 Aug; 13(8):3742-8. PubMed ID: 23802750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.
    Zhou HL; Hoang TB; Dheeraj DL; van Helvoort AT; Liu L; Harmand JC; Fimland BO; Weman H
    Nanotechnology; 2009 Oct; 20(41):415701. PubMed ID: 19755725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CdTe Nanowires by Au-Catalyzed Metalorganic Vapor Phase Epitaxy.
    Di Carlo V; Prete P; Dubrovskii VG; Berdnikov Y; Lovergine N
    Nano Lett; 2017 Jul; 17(7):4075-4082. PubMed ID: 28613888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Connecting Composition-Driven Faceting with Facet-Driven Composition Modulation in GaAs-AlGaAs Core-Shell Nanowires.
    Jeon N; Ruhstorfer D; Döblinger M; Matich S; Loitsch B; Koblmüller G; Lauhon L
    Nano Lett; 2018 Aug; 18(8):5179-5185. PubMed ID: 29995425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epitaxial Growth of GaAs Nanowires on Synthetic Mica by Metal-Organic Chemical Vapor Deposition.
    Saraswathy Vilasam AG; Prasanna PK; Yuan X; Azimi Z; Kremer F; Jagadish C; Chakraborty S; Tan HH
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3395-3403. PubMed ID: 34985872
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices.
    Lin YC; Lu KC; Wu WW; Bai J; Chen LJ; Tu KN; Huang Y
    Nano Lett; 2008 Mar; 8(3):913-8. PubMed ID: 18266331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning.
    Plissard S; Larrieu G; Wallart X; Caroff P
    Nanotechnology; 2011 Jul; 22(27):275602. PubMed ID: 21597162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the dynamics of interface morphology and crystal phase change in self-catalyzed GaAs nanowires.
    Wilson DP; Sokolovskii AS; LaPierre RR; Panciera F; Glas F; Dubrovskii VG
    Nanotechnology; 2020 Nov; 31(48):485602. PubMed ID: 32931461
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective area growth of III-V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices.
    Kanungo PD; Schmid H; Björk MT; Gignac LM; Breslin C; Bruley J; Bessire CD; Riel H
    Nanotechnology; 2013 Jun; 24(22):225304. PubMed ID: 23637047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axial GaAs/Ga(As, Bi) nanowire heterostructures.
    Oliva M; Gao G; Luna E; Geelhaar L; Lewis RB
    Nanotechnology; 2019 Oct; 30(42):425601. PubMed ID: 31304919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
    Zamani RR; Hage FS; Lehmann S; Ramasse QM; Dick KA
    Nano Lett; 2018 Mar; 18(3):1557-1563. PubMed ID: 29116807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.
    Yu X; Wang H; Pan D; Zhao J; Misuraca J; von Molnár S; Xiong P
    Nano Lett; 2013 Apr; 13(4):1572-7. PubMed ID: 23517546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition.
    Eisenhawer B; Sivakov V; Berger A; Christiansen S
    Nanotechnology; 2011 Jul; 22(30):305604. PubMed ID: 21705828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.