These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26840618)

  • 1. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives.
    Raftery RM; Walsh DP; Castaño IM; Heise A; Duffy GP; Cryan SA; O'Brien FJ
    Adv Mater; 2016 Jul; 28(27):5447-69. PubMed ID: 26840618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-Based Delivery of Nucleic Acid Therapeutics for Enhanced Bone and Cartilage Repair.
    Kelly DC; Raftery RM; Curtin CM; O'Driscoll CM; O'Brien FJ
    J Orthop Res; 2019 Aug; 37(8):1671-1680. PubMed ID: 31042304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions.
    Laird NZ; Acri TM; Tingle K; Salem AK
    Adv Drug Deliv Rev; 2021 Jul; 174():613-627. PubMed ID: 34015421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfection of autologous host cells in vivo using gene activated collagen scaffolds incorporating star-polypeptides.
    Walsh DP; Raftery RM; Castaño IM; Murphy R; Cavanagh B; Heise A; O'Brien FJ; Cryan SA
    J Control Release; 2019 Jun; 304():191-203. PubMed ID: 31075346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic acids and analogs for bone regeneration.
    Zhang Y; Ma W; Zhan Y; Mao C; Shao X; Xie X; Wei X; Lin Y
    Bone Res; 2018; 6():37. PubMed ID: 30603226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthopedic tissue regeneration: cells, scaffolds, and small molecules.
    Jeon OH; Elisseeff J
    Drug Deliv Transl Res; 2016 Apr; 6(2):105-20. PubMed ID: 26625850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage.
    Toh WS; Spector M; Lee EH; Cao T
    Mol Pharm; 2011 Aug; 8(4):994-1001. PubMed ID: 21500855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of layer-by-layer technique on surface engineering of gene-activated biomaterials].
    Hu Y; Cai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):738-41. PubMed ID: 18693468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of endogenous regenerative technology for in situ regenerative medicine.
    Anitua E; Sánchez M; Orive G
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):741-52. PubMed ID: 20102730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells.
    Nie X; Wang DA
    Biomater Sci; 2018 Oct; 6(11):2798-2811. PubMed ID: 30229775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial Highlights of 2019-Biofabrication, Tissue Engineering, Nanomedicine, and More.
    Bayindir-Buchhalter I; Hu E; Göbel U
    Adv Healthc Mater; 2020 Jan; 9(1):e1901691. PubMed ID: 31913585
    [No Abstract]   [Full Text] [Related]  

  • 13. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds.
    Raftery RM; Tierney EG; Curtin CM; Cryan SA; O'Brien FJ
    J Control Release; 2015 Jul; 210():84-94. PubMed ID: 25982680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress of Regenerative Therapy in Orthopedics.
    Pearlin ; Nayak S; Manivasagam G; Sen D
    Curr Osteoporos Rep; 2018 Apr; 16(2):169-181. PubMed ID: 29488062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges.
    Zheng Y; Hong X; Wang J; Feng L; Fan T; Guo R; Zhang H
    Adv Healthc Mater; 2021 Apr; 10(7):e2001743. PubMed ID: 33511775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications.
    Checchi M; Bertacchini J; Cavani F; Magarò MS; Reggiani Bonetti L; Pugliese GR; Tamma R; Ribatti D; Maurel DB; Palumbo C
    Biomater Sci; 2019 Dec; 8(1):413-425. PubMed ID: 31738355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designer functionalised self-assembling peptide nanofibre scaffolds for cartilage tissue engineering.
    He B; Yuan X; Zhou A; Zhang H; Jiang D
    Expert Rev Mol Med; 2014 Aug; 16():e12. PubMed ID: 25089851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in cellular and tissue engineering using layer-by-layer assembly.
    Shukla A; Almeida B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(5):411-21. PubMed ID: 24723385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocomposites reinforced by fibers or tubes as scaffolds for tissue engineering or regenerative medicine.
    Li X; Yang Y; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2014 May; 102(5):1580-94. PubMed ID: 23681610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomaterial-Enhanced Cell and Drug Delivery: Lessons Learned in the Cardiac Field and Future Perspectives.
    O'Neill HS; Gallagher LB; O'Sullivan J; Whyte W; Curley C; Dolan E; Hameed A; O'Dwyer J; Payne C; O'Reilly D; Ruiz-Hernandez E; Roche ET; O'Brien FJ; Cryan SA; Kelly H; Murphy B; Duffy GP
    Adv Mater; 2016 Jul; 28(27):5648-61. PubMed ID: 26840955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.